Corporate Finance I.

Dr. Sándor Bozsik seniour lecturer

Subject requirements

- Aim: to show and to demonstrate the tasks and duties of a financial manager in a large corporate
- Teaching book: Brealey/Myers: Principles of Corporate Finance Part 1.
- Suggested readings: Bozsik Sándor: Pénzügyi számítások I-II.
- Condition of signature: Writing and solving a small case study from investment appraisal (Excel, Word)
- Exam: written exam (70\% examples, 30% theoretical questions)

Content of case study

- A brief technical description of the proposed project
- Give financial data about the capital outlay (considering the potential opportunities)
- Forecast the future cash inflows (saved expenses) and cash outflows (lost revenues) of project
- Estimate the scrap value of project
- Make the NPV analysis

The Objective in Corporate Finance

„If you don't know where you are going, it does not matter how you get there"

Aswath Damodaran

Stern School of Business

Different corporate goals

- Profit maximization
- Revenue maximization
- Size of business
- Market share
- EVA

The Classical Viewpoint

- Van Horne: „In this book, we assume that the objective of the firm is to maximize its value to its stockholders"
- Brealey \& Myers: „Success is usually judged by value: Shareholders are made better off by any decision which increases the value of their stake in the firm... The secret of success in financial management is to increase value."
- Copeland \& Weston: The most important theme is that the objective of the firm is to maximize the wealth of its stockholders."
- Brigham and Gapenski:Throughout this book we operate on the assumption that the management's primary goal is stockholder wealth maximization which translates into maximizing the price of the common stock.

Why not profit increase?

- The value is sensitive to the risk of profit, too.
- The profit reflects the past record, the value is depend on the long term growing prospects.
- The accounting profit can be easily manipulated and a wrong indicator of company performance.
- The shareholders are interested in their personal wealth.
- Data on profit are available only occasionally.

The Classical Objective Function

Comparison of the two typical financial system

Points	Anglo-Saxon	Continental
Main money supplier	Financial markets	Financial intermediaries
Main investors	Financial	Strategic
How to measure company performance	Financial indicators	Financial and non- financial indicators
Prefers	Capital flows among sectors, takeovers and mergers	Long term investments

Financial manager Accountant

- Bank connections • Book keeping
- Cash management • Financial
- Financing
- Dividend policy
- Insurance
- Investments
statements
- Internal supervision
- Payroll
- Credit/Debtor administration
- Taxation

Controller

- Budgeting
- Management information system
- Measuring
- Acting

Task of a financial manager

Balance sheet item	Assets	Source of funds
Daily	Working capital management (liquidity)	
Occasi- onally	Investment decision (excess value)	Financing decisions (risk reduction)

Parts of Financial Statements

- Balance sheet
- Income statement
- Cash flow statement
- (Changes in Shareholders’ Equity)
- Notes to Financial Statements
- Report of Independent Auditor

A Miskolci Egyetem Gazdaságtudományi Kar
MBA-képzés
2月. Structure of balance sheet of a mobile company (Mobimak)

Assets
Inventories
Accounts receivable
Prepayments
Cash and cash equivalents
Total current assets
Share Capital not Paid-in
Intangible assets
Property, plant and equipment Deferred tax
Investment in Mobimak foundation
Total non-current assets
Total assets

Liabilities and shareholders' equity
Interest-bearing borrowings
Other current liabilities
Total current liabilities Interest-bearing borrowings
Other non-current liabilities
Total non-current liabilities
Minority interest
Share capital
Retained earnings
Reserves
Total shareholders' equity
Total liabilities and shareholders' equity

At cost minus depreciation and impairment or at net realisable value

At cost means - sum of all cash outflow till the time of activation or warehousing.

Depreciation - writing off the value of the assets due to physical or economic usage.

Impairment - physical or economic damage in value of stocks or receivables.

Net realisable value - market value of goods minus transaction cost of the deal

Depreciation period - economic useful time

Shape of depreciation

- by performance
- by plan
- by gross value
- by net value
linear degressive (progressive)

Assets	kolci	gye	em G an		ágtudományi Kar ze the balan	ce		$\begin{aligned} & \text { BA-kép } \\ & \text { leet } \end{aligned}$	pzés
	Consolidated balance sheet					2001	2002	$\begin{gathered} \text { \% of total } \\ 2001 \\ \hline \end{gathered}$	$\begin{aligned} & \text { \% of total } \\ & 2002 \end{aligned}$
	2001	2002	$\begin{gathered} \% \text { of total } \\ 2001 \end{gathered}$	\% of total 2002	Liabilities and shareholders' equity				
Inventories	360	284	5,35\%	3,67\%	Interest-bearing borrowings	401	169	5,97\%	2,18\%
Accounts receivable	781	819	11,62\%	10,57\%	Other current liabilities	1954	847	29,07\%	10,93\%
Prepayments	114	15	1,69\%	0,19\%	Total current liabilities	2355	1016	35,04\%	13,11\%
Cash and cash equivalents	372	902	5,54\%	11,64\%	Interest-bearing borrowings	828	423	12,31\%	5,46\%
Total current assets	1627	2021	24,21\%	26,07\%	Other non-current liabilities	0	0	0,00\%	0,00\%
Share Capital not Paid-in	204		3,04\%	0,00\%	Total non-current liabilities	828	423	12,31\%	5,46\%
Intangible assets	770	1096	11,45\%	14,14\%	Minority interest	0	0	0,00\%	0,00\%
Property, plant and equipment	4093	4609	60,88\%	59,45\%	Share capital	2344	2344	34,88\%	30,24\%
Deferred tax	28	27	0,42\%	0,34\%	Retained earnings	1195	3765	17,77\%	48,57\%
Investment in Mobimak foundation	0	0	0,00\%	0,00\%	Reserves	0	203	0,00\%	2,62\%
Total non-current assets	4891	5732	72,75\%	73,93\%	Total shareholders' equity Total liabilities and shareholders'	3539	6313	52,65\%	81,43\%
Total assets	6722	7752	100,00\%	100,00\%	equity	6722	7752	100,00\%	100,00\%

Uses and Sources of Funds Sources Uses

Decrease in assets Increase in liabilities Increase in
Shareholders' Equity

Increase in assets
Decrease in liabilities
Decrease in
Shareholders' Equity

- Cash flow produced by the operation
- Cash inflow from selling fixed assets
- Cash inflow from raising loans and capital
- Cash flow
\pm
- Operating cash flow
- Cash flow from investing activities
- Cash flow from financing
- Cash outflow from financing (dividend, interest, financial charges, instalments)
- Change in cash and cash equivalents

MBA-képzés The financial principles of corporates

- Profitability -> maximise the shareholders' wealth
- Liquidity -> keep the solvency
- Security -> don’t make too risky businesses
- Flexibility -> be able to utilise any unexpected opportunity and to defend any unexpected threat
- Independency -> follow the corporate's own interest

Measuring Investment Returns

Aswath Damodaran

Stern School of Business

First Principles

- Invest in projects that yield a return greater than the minimum acceptable hurdle rate.
- The hurdle rate should be higher for riskier projects and reflect the financing mix used - owners’ funds (equity) or borrowed money (debt)
- Returns on projects should be measured based on cash flows generated and the timing of these cash flows; they should also consider both positive and negative side effects of these projects.
- Choose a financing mix that minimizes the hurdle rate and matches the assets being financed.
- If there are not enough investments that earn the hurdle rate, return the cash to stockholders.
- The form of returns - dividends and stock buybacks - will depend upon the stockholders’ characteristics.

Objective. Maximize the Value of the Firm
Aswath Damodaran

Time value of money

- Why should we know the time value?
- Future value
- Present value, net present value
- Perpetuity
- Annuity
- Exercises

Rules of calculation

- Two unit of money values more than one.
- Present unit of money values more than future one.
- A certain unit of money values more than an uncertain (more risky) one.

Example for future value calculation

Our company is investing 100 million MKD in medium term. By our survey we can choose between two options:

1. We buy a company, which earn an annual 20, 20, 30, 40 and 35 million MKD net cash flow respectively.
2. We put the 100 million in deposit with a guaranteed interest of 10%. The interests are added to the initial sum.

If the company ask you to appraise the two options, which one are you willing to offer?
In bank: $100 * 1.1^{5}=100 * 1,6105=161,1$ million MKD
In company:

```

```

$$
\begin{aligned}
& F=20 * 1.1^{4}+20 * 1.1^{3}+30 * 1.1^{2}+40 * 1.1+35= \\
& 20 * 1.464+20 * 1.331+30 * 1.210+40 * 1.1+35=171.2 \text { million MKD }
\end{aligned}
$$

```

The Tele-Macedonia Plc. are considering to introduce a new service - the digital voice post. The purchase of modern digital gadgets required to the introduction costs altogether 1,2 billion MKD.
The required cash is available. By the pro forma calculation the new service may earn 350 million MKD annually in the next 5 years.
A member of the company's Board of Directors ask you for an advice: Is it worth investing this money into this project, if the market yield of investments with similar risk is about \(10 \%\) ?

\begin{tabular}{|c|c|c|}
\hline Name of cash flow & Perpetuity & Annuity \\
\hline Definition & Flow of fixed amounts at stated intervals up to infinity & Flow of fixed amounts at stated intervals up to a certain date \\
\hline Formula & \(P=\frac{C}{r}\) & \(P=C * \frac{(1+r)^{n}-1}{(1+r)^{n} * r}\) \\
\hline Appearance & Preferred shares, perpetuity bond, real estate rents & Leasing fees, instalments of home loans, fixed rate bonds \\
\hline
\end{tabular}

Where: P - present value; C - future cash flow; r - expected return; n - term of flows



\section*{霡 ble of the present value of annuity}


\section*{ (Use the time value tables)}

The Maktel puts 100 million MKD to a deposit with \(12 \%\) annual interest. The interest is credited quarterly. How much money would the company get in 1 year, if the interest rate remains the same, and the interests are added to the deposit?
2. The Maktel has got a claim of 10 million MKD against the Macedonian Tax Office. The terms of payment is 180 days. The overdraft rate of Maktel is \(16 \%\) p.a. paid quarterly. A factoring company offers 9.5 million for this claim. Do you accept its bid or not?
3. The Maktel is considering to lease an advanced secondary exchange. The exchange costs 100 million MKD, which you can buy from bank loan with \(4 \%\) quarterly interest. By the bid of the leasing company, you must pay 10 million MKD through 3 years at the end of every quarter. In addition to you must pay 5 million MKD at the end of contract period, as a scrap value. Do you accept the bid of the leasing company, or buy the exchange from bank loan?

\section*{Discounted payback period}
n - payback period
\(n \Rightarrow P:=\sum^{n} \xrightarrow{C F_{i}} \quad C F_{i}-\) cash flow in year i
Calculation: \(\quad \sum_{i=1}(1+r)^{i}\)
\(\mathrm{P}_{0}\) - capital outlay
\(r\) - hurdle rate
Advantage:
- is unavoidable, if the liquidity is vital
- takes consider the time value of money

\section*{Disadvantage:}
- does not take into account cash flows after the payback period
- encourages the risky investments

Application:
- a query rule among investments

\section*{Net Present Value}

Calculation: \(N P V=-P_{0}+\sum^{n} \frac{C F_{i}}{(1+r)^{2}}{ }^{n} F_{i}-\) cash flow in year \(i\) Advantage:
\[
\mathrm{n} \text { - payback period }
\]
\[
\sum_{i=1} \overline{(1+r)^{i}} \mathrm{P}_{0}-\text { capital outlay }
\]
r - hurdle rate
- takes into account all relevant information
- is directly linked to the final aim of a company - to increase the shareholders' wealth.
- the NPV is additive.

\section*{Disadvantage:}
- shows the absolute change in shareholders' wealth not the relative one.

\section*{Application:}
- is offered to evaluate all meaningful information.

\title{
 \\ \\ Internal Rate of Return
} \\ \\ Internal Rate of Return
}

Calculation: \(N P V:=0=-P_{0}+\sum_{i=1}^{n} \frac{C F_{i}}{(1+I R R)^{i}}\)
Advantage:
- shows, how much is the yield of investment, if the cash flows of project can be reinvested with the IRR.
- gives the same result in most cases as the NPV

\section*{Disadvantage:}
- gives misleading result in case of mutually exclusive projects
- mustn’t apply in case of abnormal cash flows
- is very hard to calculate.

\section*{Application:}
- filling credit claims
- evaluating financial investments

\section*{An Alternative to IRR with Capital Rationing}
- The problem with the NPV rule, when there is capital rationing, is that it is a dollar value. It measures success in absolute terms.
- The NPV can be converted into a relative measure by dividing by the initial investment. This is called the profitability index.
- Profitability Index (PI) = NPV/Initial Investment
- In the example described, the PI of the two projects would have been:
- PI of Project \(\mathrm{A}=\$ 467,936 / 1,000,000=46.79 \%\)
- PI of Project B \(=\$ 1,358,664 / 10,000,000=13.59 \%\)

Project A would have scored higher.

\section*{NPV, IRR and the Reinvestment Rate Assumption}
- The NPV rule assumes that intermediate cash flows on the project get reinvested at the hurdle rate (which is based upon what projects of comparable risk should earn).
- The IRR rule assumes that intermediate cash flows on the project get reinvested at the IRR. Implicit is the assumption that the firm has an infinite stream of projects yielding similar IRRs.
- Conclusion: When the IRR is high (the project is creating significant surplus value) and the project life is long, the IRR will overstate the true return on the project.

\section*{Why NPV and IRR may differ..}
- The NPV is a dollar surplus value, whereas the IRR is a percentage measure of return. The NPV is therefore likely to be larger for „large scale" projects, while the IRR is higher for „small-scale" projects.
- The NPV assumes that intermediate cash flows get reinvested at the „hurdle rate", which is based upon what you can make on investments of comparable risk, while the IRR assumes that intermediate cash flows get reinvested at the „IRR".
- A project can have only one NPV, whereas it can have more than one IRR.

\section*{Choosing Between Mutually Exclusive Projects}
- The net present values of mutually exclusive projects with different lives cannot be compared, since there is a bias towards longer-life projects.
- To do the comparison, we have to
- replicate the projects till they have the same life (or)
- convert the net present values into annuities

\section*{A Miskolci Egyetęm Gazdåságtudományi Kar \\ Profitability index}

\section*{Calculation: \(P I=\frac{G P V}{P_{0}}\)} PI - Profitability index GPV - Gross Present Value \(\mathrm{P}_{0}\) - capital outlay
- shows the relative change in shareholders’ wealth

\section*{Disadvantage:}
- gives misleading result in case of mutually exclusive projects
Application:
- can be applied, if there is capital constraint and the investments can be split.

\section*{Capital Rationing, Uncertainty and Choosing a Rule}
- If a business has limited access to capital, has a stream of surplus value projects and faces more uncertainty in its project cash flows, it is much more likely to use IRR as its decision rule.

Small, high-growth companies and private businesses are much more likely to use IRR.
- If a business has substantial funds on hand, access to capital, limited surplus value projects, and more certainty on its project cash flows, it is much more likely to use NPV as its decision rule

As firms go public and grow, they are much more likely to gain from using NPV.
- Several equipments meet the requirements
- They differ in
- Price
- Life time
- Operation cost
- Reliability

Let's suppose, that I lease the equipments! Which equipment has got the lowest rental and operational cost?

Annual cost of equipment \(=\) Annuity cost + Operational cost \(=\)

Initial capital outlay/Annuity factor + Operational cost

We are considering to buy a special air conditioner to ensure stabile climatic environment for our new special digital exchange which routes the calls between Kumanovo and Skopje. Four bid arrived to the tender, and the technical details contain the table below:

\begin{tabular}{|c|r|r|r|r|r|}
\hline \begin{tabular}{c} 
Type of \\
exchange
\end{tabular} & \begin{tabular}{c} 
Capital \\
outlay
\end{tabular} & \begin{tabular}{c} 
Annuity \\
factor
\end{tabular} & Annuity & \begin{tabular}{c} 
Operational \\
cost
\end{tabular} & Total \\
\hline A & & 6,14 & & & \\
\hline B & & & 57848 & & \\
\hline C & 745000 & 8,51 & & & \\
\hline D & & & & 185000 & \\
\hline
\end{tabular}

\section*{Solution}
\begin{tabular}{|c|r|r|r|r|r|}
\hline \begin{tabular}{c} 
Type of \\
exchange
\end{tabular} & \begin{tabular}{c} 
Capital \\
outlay
\end{tabular} & \begin{tabular}{c} 
Annuity \\
factor
\end{tabular} & Annuity & \begin{tabular}{c} 
Operational \\
cost
\end{tabular} & \multicolumn{1}{c|}{ Total } \\
\hline A & 220000 & 6,14 & 35804 & 320000 & 355804 \\
\hline B & 440000 & 7,61 & 57848 & 260000 & 317848 \\
\hline C & \(\mathbf{7 4 5 0 0 0}\) & \(\mathbf{8 , 5 1}\) & \(\mathbf{8 7 5 0 7}\) & \(\mathbf{2 1 0 0 0 0}\) & \(\mathbf{2 9 7 5 0 7}\) \\
\hline D & \(\mathbf{1 2 5 0 0 0 0}\) & 9,43 & 132599 & 185000 & 317599 \\
\hline
\end{tabular}

\section*{Measures of return: earnings versus cash flows}
- Principles Governing Accounting Earnings Measurement
- Accrual Accounting: Show revenues when products and services are sold or provided, not when they are paid for. Show expenses associated with these revenues rather than cash expenses.
- Operating versus Capital Expenditures: Only expenses associated with creating revenues in the current period should be treated as operating expenses. Expenses that create benefits over several periods are written off over multiple periods (as depreciation or amortization)
- To get from accounting earnings to cash flows:
- you have to add back non-cash expenses (like depreciation)
- you have to subtract out cash outflows which are not expensed (such as capital expenditures)
- you have to make accrual revenues and expenses into cash revenues and expenses (by considering changes in working capital).

\section*{The Capital Expenditures Effect}
- Capital expenditures are not treated as accounting expenses but they do cause cash outflows.
- Capital expenditures can generally be categorized into two groups
- New (or Growth) capital expenditures are capital expenditures designed to create new assets and future growth
- Maintenance capital expenditures refer to capital expenditures designed to keep existing assets.
- Both initial and maintenance capital expenditures reduce cash flows
- The need for maintenance capital expenditures will increase with the life of the projects. In other words, a 25-year project will require more maintenance capital expenditures than a 2 -year asset.

\section*{Measuring Returns Right: The Basic Principles}
- Use cash flows rather than earnings. You cannot spend earnings.
- Use „incremental" cash flows relating to the investment decision, i.e., cashflows that occur as a consequence of the decision, rather than total cash flows.
- Use „time weighted" returns, i.e., value cash flows that occur earlier more than cash flows that occur later.

The Return Mantra: „Time-weighted, Incremental Cash Flow
Return"

\section*{Relevant}
- Incremental cash inflow and outflow
- Opportunity cost/benefit

\section*{Irrelevant}
- Sunk cost
- Fix costs allocated to the project

\section*{To Time-Weighted Cash Flows}
- Incremental cash flows in the earlier years are worth more than incremental cash flows in later years.
- In fact, cash flows across time cannot be added up. They have to be brought to the same point in time before aggregation.
- This process of moving cash flows through time is
- discounting, when future cash flows are brought to the present
- compounding, when present cash flows are taken to the future
- The discounting and compounding is done at a discount rate that will reflect
- Expected inflation: Higher Inflation -> Higher Discount Rates
- Expected real rate: Higher real rate -> Higher Discount rate
- Expected uncertainty: Higher uncertainty -> Higher Discount Rate

\section*{Sunk Costs}
- Any expenditure that has already been incurred, and cannot be recovered (even if a projects is rejected) is called a sunk cost
- When analyzing a project, sunk costs should not be considered since they are incremental
- By this definition, market testing expenses and R\&D expenses are both likely to be sunk costs before the projects that are based upon them are analyzed. If sunk costs are not considered in project analysis, how can a firm ensure that these costs are covered?

\section*{Allocated Costs}
- Firms allocate costs to infividual projects from a centralized pool (such as general and administrative expenses) based upon some characteristic of the project (sales is a common choice)
- For large firms, these allocated costs can result in the rejection of projects
- To the degree that these costs are not incremental (and would exist anyway), this makes the firm worse off.
- Thus, it is only the incremental componenet of allocated costs that should show up in project analysis.
- How, looking at these pooled expenses, do we know how much of the costs are fixed and how much are varialbe?

\section*{A Miskolci Egyetem Gazdaságtudományi Kar The tax shield of depreciation (1)}
+ Revenue (R)
- Operating costs (OC)
- Depreciation (D)

Earnings before taxation (PP)
- Corporate tax (18\%) (T)

Earnings after taxation (AP)
+ Depreciation
Operational cash flow after taxation (CF)
\[
\mathrm{CF}=(\mathrm{R}-\mathrm{OC})^{*}(1-\mathrm{T})_{\mathrm{t}}+\mathrm{T}{ }_{\mathrm{C}}^{*} \mathrm{D}
\]

The size of shield depends on:
-the size of depreciation
-the actual rate of corporate tax -the profitability of company
\[
\begin{aligned}
& \mathrm{CF}=(\mathrm{R}-\mathrm{OC}-\mathrm{D}) *(1-\mathrm{T})+\mathrm{D} \\
& C F=(R-O C) *(1-T)-D+T{ }_{C}^{* D}+D
\end{aligned}
\]

\section*{Real value model:}
- Real cash flow discounted by real rate of return

Nominal value model:
- Nominal cash flow discounted by nominal rate of return

Suppose, that a project has got the following cash flows in real terms:
\begin{tabular}{|l|c|c|c|}
\hline Year & 0 & 1 & 2 \\
\hline Cash flow & -15 & +10 & +10 \\
\hline
\end{tabular}

Annual inflation: 10\%; Nominal hurdle rate: 20\%
Appraise the project with real value model and nominal value model! Use the discount table!

\section*{Nominal value model}
\[
\begin{aligned}
& N P V=-15+10 * 1.1 * \frac{1}{1.2^{1}}+10 * 1.1^{2} * \frac{1}{1.2^{2}}= \\
& -15+11 * 0.8333+12.1 * 0.6944=+2.57
\end{aligned}
\]

Real value model
\[
N P V=-15+10 * \frac{1}{1.091}+10 * \frac{1}{1.091^{2}}=2.57
\]

Conditions of using real value model:
-No (corporate) tax
-General inflation

Elements of working capital:
+ Account receivables
+ Inventories
(+ Cash)
- Account payables

Working capital is generally a function of revenue.

The change of working capital has got a reverse effect on the cash flow.

\section*{The Working Capital Effect}
- Intuitively, money invested in inventory or in accounts receivable cannot be used elsewhere. It, thus, represents a drain on cash flows
- To the degree that some of these investments can be financed using suppliers credit (accounts payable) the cash flow drain is reduced.
- Investments in working capital are thus cash outflows
- Any increase in working capital reduces cash flows in that year
- Any decrease in working capital increases cash flows in that year
- To provide closure, working capital investments need to be salvaged at the end of the project life.
- Proposition 1: The failure to consider working capital in a capital budgeting project will overstate cash flows on that project and make it look more attractive than it really is.
- Proposition 2: Other things held equal, a reduction in working capital requirements will increase the cash flows on all projects for a firm.
- Technical life time of purchased equipment
- Economic life time of purchased equipment
- Forecasting ability of product market
- Availability of financing sources
- Others
- Stability of suppliers
- State regulation
- Tax allowances
- etc.

\section*{Project scrap value}
- + Forecasted market price of project assets (R)
- - Book value of project assets (D)
- Earnings before tax (PP)
- - Tax (T)
- Net Income (NI)
- + Book value of project assets (D)
- + Closing balance of working capital in the previous year

Principle: Suppose, that all assets created by the project will be sold at the current market price.

\section*{Closure on Cash Flows}
- In a project with a finite and short life, you would need to compute a salvage value, wihich is the expected proceeds from selling all of the investment in the project at the end of the project life. It is usually set equal to book value of fixed assets and working capital.
- In a project with an infinite or very long life, we compute cash flows for a reasonable period, and then compute a terminal value for this project, which is the present value of all cash flows that occur after the estimation period ends.
- Assuming the project lasts forever, and that cash flows after year 9 grow 3\% (the inflation rate) forever, the present value at the end of year 9 of cash flows after that can be written as:
- Terminal Value \(=\) CF in year 10/(Cost of Capital - Growth Rate)
\[
=822 /(.1232-.03)=\$ 8,821 \text { million }
\]

\section*{}
- + Market value of invested assets (R)
- - Net book value of invested assets (D)
- Pre tax profit (PP)
- - Taxes (18\%) (T)
- Net income (NI)
- + Net book value of invested assets (D)
- + Closing balance of working capital in previous year
Principle: Suppose, that all of the assets created by the project will be sold at current market price.

\section*{Should taxed}

Should not be taxed
- Capital outlay
- Change in working capital
- Contribution in kind
- NPV of opportunity investments
- Incremental revenues
- Incremental operational costs
- Scrap value of project assets
- Opportunity costs/benefits

Average cost of capital

With formula:
\[
W A C C=r_{e} * \frac{E}{D+E}+r_{d} * \frac{D}{D+E}
\]

Where,
D - total debt
E - total equity
\(r_{d}\) - interest rate of debt
\(\mathrm{r}_{\mathrm{e}}\) - expected yield of equity

\section*{Project cash flow}

Shouldn't be taxed
- Capital outlay
- Change in working capital
- Contribution in kind
- NPV of opportunities

\section*{Should be taxed}
- Incremental revenue
- Incremental
expenditures
- Asset selling price
- Scrap value
- Missed
revenue/expenditure


\title{
Picking the Right Projects: \\ Investment Analysis
}

\author{
Aswath Damodaran
}

\section*{First Principles}
- Invest in projects that yield a return greater than the minimum acceptable hurdle rate.
- The hurdle rate should be higher for riskier projects and reflect teh financing mix used - owners' funds (equity) or borrowed money (debt)
- Returns on projects shold be measured based on cash flows generated and the timing of these cash flows; they should also consider both positive and negative side effects of these projects.
- Choose a financing max that minimizes the hurdle rate and matches the assets being financed.
- If there are not enough investments that earn the hurdle rate, return the cash to stockholders.
- The form of returns - dividends and stock buyback - will depend upon the stockholders' characteristics.

\section*{Yield calculation}
\begin{tabular}{|l|c|r|}
\hline & \multicolumn{2}{|c|}{ Share } \\
\hline & Date & Price \\
\hline Purchasing price & 02.08 .27 & 19000 \\
\hline Selling price & 03.01 .07 & 20000 \\
\hline Term yield & \multicolumn{2}{|c|}{133} \\
\hline Nominal yield & \multicolumn{2}{|c|}{\(14,44 \%\)} \\
\hline Effective yield & \(15,12 \%\) \\
\hline Continous yield & \multicolumn{2}{|c|}{\(14,08 \%\)} \\
\hline
\end{tabular}
\[
r_{n}=\left[\frac{P_{1}}{P_{0}}-1\right] \times \frac{1}{t} \quad r_{e f f}=\left[\frac{P_{1}}{P_{0}}\right]^{\frac{1}{t}}-1 \quad r_{\mathrm{int}}=\frac{\ln \left[\frac{P_{1}}{P_{0}}\right]}{t}
\]

\section*{What is Risk?}
- Risk, in traditional terms, is viewed as a 'negative’. Webster's dictionary, for instance, defines risk as „exposing to danger or hazard". The Chinese symbols for risk, reproduced below, give a much better description of risk
- The first symbol is the symbol for „danger", while the second is the symbol for „opportunity", making risk a mix of danger and opportunity.
\begin{tabular}{|c|c|c|c|}
\hline Yield & Case & Share A & Share B \\
\hline \(r_{p}=\sum^{n} w_{i}\) & 1 & 10\% & 13\% \\
\hline \(r_{p}=\sum w_{i} \times r_{i}\) & 2 & 20\% & 18\% \\
\hline & & 30\% & 23\% \\
\hline Risk & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Yield \\
Std. Dev.
\end{tabular}}} \\
\hline \({ }^{n}{ }^{n} w^{\prime} \times w_{j} \times s_{1} \times s_{i} \times R_{i}\) & & & \\
\hline \(\sqrt{i=1} \sum_{j=1} w_{i} \times w_{j} \times s_{i} \times s_{j} \times R_{i j}\) & \multicolumn{3}{|l|}{Correlation} \\
\hline Correlation & \multicolumn{3}{|l|}{Portfolio yield} \\
\hline \[
\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\overline{-}\right)
\] & \multicolumn{3}{|l|}{Portfolio std. Dev.} \\
\hline
\end{tabular}

- Portfolio with minimal standard deviation
\[
w_{D}=\frac{\sigma_{E}^{2}-\operatorname{Cov}\left(r_{D}, r_{E}\right)}{\sigma_{D}^{2}+\sigma_{E}^{2}-2 \times \operatorname{Cov}\left(r_{D}, r_{e}\right)} \Rightarrow \frac{\sigma_{E}^{2}}{\sigma_{D}^{2}+\sigma_{E}^{2}} \text {, ha } \mathrm{R}=-1
\]
- Portfolio of CAL with maximal slope
\[
S=\frac{E\left(r_{P}\right)-r_{f}}{\sigma_{P}} \Rightarrow \max \quad w_{D}=\frac{\left[r_{D}-r_{f}\right] * \sigma_{E}^{2}-\left[r_{E}-r_{f}\right] * \operatorname{Cov}\left(r_{D}, r_{E}\right)}{\left[r_{D}-r_{f}\right] * \sigma_{E}^{2}+\left[r_{E}-r_{f}\right] * \sigma_{D}^{2}-\left[r_{D}+r_{E}-2 * r_{f}\right] * \operatorname{Cov}\left(r_{D}, r_{E}\right.}
\]


\section*{The Capital Asset Princing Model}
- Uses variances as a measure of risk
- Specifies that a portoin of variance can be diversified away, and that is only the non-diversifiable portion that is rewarded.
- Measures the non-diversifiable risk with beta, which is standardized around one.
- Translates beta into expected return -

Expected Return \(=\) Riskfree rate + Beta * Risk Premium
- Works as well as the next best alternative in most cases.

\section*{The Importance of Diversification: Risk Types}
- The risk (variance) on any individual investment can be broken down into two sources. Some of the risk is specific to the firm, and is called firm-specific, whereas the rest of the risk is market wide and affects all investments.
- The risk faced by a firm can be fall into the following categories -
- (1) Project-specific; an individual project may have higher or lower cash flows than expected.
- (2) Competitive Risk, which is that the earnings and cash flows on a project can be affected by the actions of competitors.
- (3) Indistry-specific Risk, which covers factors that primarily impact the earnings and cash flows of a specific industry.
- (4) International Risk, arising from having some cash flows in currencies other than the one in which the earnings are measured and stock is priced
- (5) Market risk, which reflects the effect on earnings and cash flows of macro economic factors that essentially affect all companies


\section*{The Effects of Diversification}
- Firm-specific risk can be reduced, if not eliminated, by increasing the number of investments in your portfolio (i.e., by being diversified).
Market-wide risk cannot. This can be justified on either economic or statistical grounds.
- On economic grounds, diversifying and holiding a larger portfolio eliminates firm-specific risk for two reasons-
- (a) Each investment is a much smaller percentage of the portfolio, muting the effect (positive or negative) on the overall portolio.
- (b) Firm-specific actions can be either positive or negative. In a large portfolio, it is argued, these effects will average out to zero. (For every firm, where something bad happens, there will be soma other firm, where something good happens.)

\section*{The Market Portfolio}
- Assuming diversification cost nothing (in terms of transactions cost), and that all assets can be traded, the limit of diversification is to hold a portfolio of every single asset in the economy (in proportion to market value). This portfolio is called the market portfolio.
- Individual investors will adjust for risk, by adjusting their allocations to this market portfolio and a riskless asset (such as a T-Bill)
Preferred risk level Allocation decision

No risk
Some risk
A little more risk
Even more risk
A risk hog..

100\% in T-Bills
50\% in T-Bills; 50\% in Market Portfolio;
25\% in T-Bills; 75\% in Market Portfolio
100\% Market Portfolio
Borrow money; Invest in market portfolio;
- Every investor holds some combination of the risk free asset and the market portfolio.

Aswath Damodaran

\section*{Limitations of the CAPM}
1. The model makes unrealistic assumptions
2. The pareameters of the model cannot be estimated precisely
- Definition of a market index
- Firm may have changed during the 'estimation' period'
3. The model does not work well
- If the model is right, there should be
a linear relationship between returns and betas the only variable that should explain returns is betas
- The reality is that
the relationship between betas and returns is weak Other variables (size, price/book value) seem to explain differences in returns better.

\section*{The Riskfree Rate and Time Horizon}
- On a riskfree asset, the actual return is equal to the expected return. Therefore, there is no variance around the expected return.
- For an investment to be riskfree, i.e., to have an actual return be equal to the expected return, two conditions have to be met -
- There has to be no default risk, which generally implies that the security has to be issued by the government. Note, however, that not all governments can be viewed as default free.
- There can be no uncertainty about reinvestment rates, which impliest that it is a zero coupon security with the same maturity as the cash flow being analyzed.

\section*{Riskfree Rate in Practice}
- The riskfree rate is the rate on a zero coupon government bond matching the time horizon of the cash flow being analyzed.
- Theoretically, this translates into using different riskfree rates for each cash flow - the 1 year zero coupon rate for the cash flow in year 1 , the 2 -year zero coupon rate for the cash flow in year \(2 \ldots\)
- Practically speaking, if there is substatial uncertainty about expected cash flows, the present value effect of using time varying riskfree rates is small enough that it may not be worth it.

\section*{Measurement of the risk premium}
- The risk premium is the premium that investors demand for investing in an average risk investment, relative to the riskfree rate.
- As a general proposition, this premium should be
- greater than zero
- increase with the risk aversion of the investors in that market
- increase with the riskiness of the „average" risk investment.

\section*{Estimating Risk Premiums in Practice}
- Survey investors on their desired risk premiums and use the average premium from these surveys.
- Assume that the actual premium delivered over long time periods is equal to the expected premium - i.e., use historical data
- Estimate the implied premium in today's asset prices.

\section*{The Survey Approach}
- Surveying all investors in a market place is impractical.
- However, you can survey a few investors (especially the larger investors) and use these results. In practice, this translates into surveys of money managers’ expectations of expected returns on stocks over the next year.
- The limitations of this approach are:
- there are no constraints on reasonability (the survey could produce negative risk premiums or risk premiums of 50\%)
- they are extremely volatile
- they tend to be short term; even the longest surveys do not go beyond one year

\section*{The Historical Premium Approach}
- This is the default approach used by most to arrive at the premium to use in the model
- In most cases, this approach does the following
- it defines a time period for the estimation (1926-Present, 1962-Present...)
- it calculates average returns on a stock index during the period
- it calculates average returns on a riskless security over the period
- it calculates the difference between the two
- and uses it as a premium looking forward
- The limitations of this approach are:
- it assumes that the risk aversion of investros has not changed in a systematic way across time. (The risk aversion may change from year to year, but it reverts back to historical averages)
- it assumes that the riskiness of the „risky" portfolio (stock index) has not changed in a systematic way across time.

\section*{What about historical premiums for other markets?}
- Historical data for markets outside the United States tends to be sketch and unreliable.
- Ibbotson, for instance, estimates the following premiums for major markets from 1970-1996
\begin{tabular}{llll} 
Country & Stock return & Bond Return & Equity Risk Premium \\
Australia & \(8.47 \%\) & \(6.99 \%\) & \(1.48 \%\) \\
France & \(11.51 \%\) & \(9.17 \%\) & \(2.34 \%\) \\
Germany & \(11.30 \%\) & \(12.10 \%\) & \(-0.80 \%\) \\
Italy & \(5.49 \%\) & \(7.84 \%\) & \(-2.35 \%\) \\
Japan & \(15.73 \%\) & \(12.69 \%\) & \(3.04 \%\) \\
Mexico & \(11.88 \%\) & \(10.71 \%\) & \(1.17 \%\) \\
Singapore & \(15.48 \%\) & \(6.45 \%\) & \(9.03 \%\) \\
Spain & \(8.22 \%\) & \(7.91 \%\) & \(0.31 \%\) \\
Switzerland & \(13.49 \%\) & \(10.11 \%\) & \(3.38 \%\) \\
UK & \(12.42 \%\) & \(7.81 \%\) & \(4.61 \%\)
\end{tabular}

\footnotetext{
Aswath Damodaran
}

\title{
Finding the Right Financing Mix: The Capital Structure Decision
}

\author{
Aswath Damodaran
}

Stern School of Business

\section*{First Principles}
- Invest in projects that yield a return greater than the minimum acceptable hurdle rate.
- The hurdle rate should be higher for riskier projects and reflect the financing mix used - owners' funds (equity) or borrowed money (debt)
- Returns on projects should be measured based on cash flows generated and the timing of these cash flows; they should also consider both positive
and negative side effects of these projects.
- Choose a financing mix that minimizes the hurdle rate and matches the assets being financed.
- If there are not enough investments that earn the hurdle rate, return the cash to stockholders.
- The form of returns - dividends and stock buybacks - will depend upon the stockholders' characteristics.

Objective: Maximize the Value of the Firm


\section*{Currency macthing}

You should finance currency producing assets from source of fund raised from that currency.
\begin{tabular}{|c|c|}
\hline Assets & Source of funds \\
\hline Assets producing export goods & Nominated in currency \\
\hline Assets producing domestic goods & Nomintated in forint \\
\hline
\end{tabular}

\section*{Risk matching}

Assets producing volatile cash flow should be financed from safe funds (equity), assets producing safe cash flow should be financed from risky funds (debt).

Cyclical sectors
-Heavy chemicals
-Metallurgy, Engineering
-Pharmaceuticals
-Technology industries

Solid sectors
-Retail
-Utilities
-Services

\section*{Leverage effect}
\begin{tabular}{|l|c|c|c|}
\hline Unleveraged firm (Equity of 100 MFT) \\
\hline Case & Good & Average & Bad \\
\hline Operating profit & 30 & 20 & 10 \\
\hline Interest expenses & - & - & - \\
\hline Net income & 30 & 20 & 10 \\
\hline ROE & \(30 \%\) & \(20 \%\) & \(10 \%\) \\
\hline Ler
\end{tabular}

Leveraged firm ( 50 MFt debt, 50 MFt equity)
\begin{tabular}{|l|c|c|c|}
\hline Operating profit & 30 & 20 & 10 \\
\hline Interest expenses & 10 & 10 & 10 \\
\hline Net income & 20 & 10 & 0 \\
\hline ROE & \(40 \%\) & \(20 \%\) & \(0 \%\) \\
\hline
\end{tabular}

\section*{ Equation of leveraged ROE}
\[
R O E=R O A+\left(R O A-R_{D}\right) \times \frac{D}{E}
\]
where,
ROE - return of equity
ROA - return of assets
D - value of debt
E - value of equity
\(R_{D}\) - average rate of debt

\section*{The Choices in Financing}
- There are only two ways in which a business can make money.
- The first is debt. The essence of debt is that you promise to make fixed payments in the future (interest payments and repaying principal). If you fail to make those payments, you lose control of your business.
- The other is equity. With equity, you do get whatever cash flows are left over after you have made debt payments.
- The equity can take different forms:
- For very small businesses: it can be owners investing their savings
- For slightly larger businesses: it can be venture capital
- For publicly traded firms: it is common stock
- The debt can also take different forms
- For private businesses: it is usually bank loans
- For publicly traded firms: it can take the form of bonds

How the financial decisions affects on the value of the firm?
\[
G P V=\sum_{i=1}^{n} \frac{C F_{i}}{(1+W A C C)^{i}}
\]

If I can minimize the WACC, I increase the value of the firm.
\[
W A C C=r_{E} \times \frac{E}{D+E}+r_{D} \times \frac{D}{D+E}
\]

Two ways to optimize:
-Decrease the expected yield - Modify the leverage

A firm has the following capital structure: The firm issued common stock for 600 million USD and preferred stock with \(10 \%\) coupon rate for 200 million USD. The price of common stock is \(400 \%\) of nominal value, which contains \(20 \%\) accumulated dividend due to pay promptly. The expected growth rate of dividend is \(10 \%\). The price of preferred stock is \(120 \%\), the accumulated dividend is \(10 \%\). The issuing cost of stocks is \(4 \%\) and \(3 \%\) of the nominal value respectively. The firm raised 300 million USD loan with \(15 \%\) fixed interest. The handling fee of loan was \(2 \%\), which was deducted at granting. Currently the firm can raise loan with \(12 \%\) fixed rate and \(1 \%\) handling fee. The amount of issued bonds is 500 million USD, their price is \(100 \%\) of nominal value. The accumulated interest is \(11 \%\), and the issuing cost is \(2 \%\). The interest rate of bond is \(15 \%\). The corporate tax rate is \(16 \%\). Calculate the WACC!
- Our company company is not registered on the SE, but there is a company which operates in the same sector, has got the same size, and has got the same financial structure. (,,benchmark") Bechmark's beta is 2,0 . The expected return of the index is \(20 \%\), and the risk-free rate \(6 \%\). The APR of loan \(10 \%\). The company's net income is 34 mHUF, the amount of loan is 100 mHUF . The benchmark company's net income is 50 mHUF , number of share isssued is 5 m . The price/earning ratio of benchmark is 7 and we use \(20 \%\) discount.

\section*{The Financing Mix Question}
- In deciding to raise financing for a business, is there an optimal mix of debt and equity?
- If yes, what is the trade off that lets us determine this optimal mix?
- If not, why not?

\section*{Measuring a firm's financing mix}
- The simplest measure of how much debt and equity a firm is using currently is to look at the proportion of debt in the total financing. This ratio is called the debt to capital ratio:
Debt to Capital Ratio = Debt \(/(\) Debt + Equity \()\)
- Debt includes all interest bearing liabilities, short term as well as long term.
- Equity can be defined either in accounting terms (as book value of equity) or in market value terms (based upon the current price). The resulting debt ratios can be very different.

\section*{Costs and Benefits of Debt}
- Benefits of Debt
- Tax Benefits
- Adds discipline to management
- Costs of Debt
- Bankruptcy Costs
- Agency Costs
- Loss of Future Flexibility

\section*{Tax Benefits of Debt}
- When you borrow money, you are alloweed to deduct interest expenses from your income to arrive at taxable income. This reduces your taxes.
When you use equity, you are not allowed to deduct payment to equity (such as dividends) to arrive at taxable income.
- The dollar tax benefit from the interest payment in any year is a funciton of your tax rate and the interest payment:
- Tax benefit each year = Tax Rate * Interest Payment
- Proposition 1: Other things being equal, the higher the marginal tax rate of a business, the more debt it will have in its capital structure.

\section*{Debt adds discipline to management}
- If you are managers of a firm with no debt, and you generate high income and cash flows each year, you tend to become complacent. The complacency can lead to inefficiency and investing in poor projects. There is little or no cost borne by the managers.
- Forcing such a firm to borrow money can be an antidote to the complacency. The managers now have to ensure that the investments they make will earn at least enough return to cover the interest expenses. The cost of not doing so is bankruptcy and the loss of such a job.

\section*{Bankruptcy Cost}
- The expected bankruptcy cost is a function of two variables --
- the cost of going bankrupt
- direct costs: Legal and other Deadweight Costs
- indirect costs: Costs arising because people perceive you to be in financial
- the probability of bankruptcy, which will depend upon how uncertain you are about future cash flows
- As you borrow more, you increase the probability of bankruptcy and hence the expected bankruptcy cost.

\section*{The Bankruptcy Cost Proposition}
- Proposition 2: Other things being equal, the greater the indirect bankruptcy cost and/or probability of bankruptcy in the operating cashflows of the firm, the less debt the firm can afford to use.

\section*{Agency Cost}
- An agency cost arises whenever you hire someone else to do something for you. It arises because your interests (as the principal) may deviate from those of the person you hired (as the agent).
- When you lend money to a business, you are allowing the stockholders to use that money in the course of running that business. Stockholders interests are different from your interests, because
- You (as lender) are interested in getting your money back
- Stockholders are interested in maximizing your wealth
- In some cases, the clash of interests can lead to stockholders
- Investing in riskier projects than you would want them to
- Paying themselves large dividends when you would rather have them keep the cash in the business.
- Proposition 3: Other things being equal, the greater the agency problems associated with lending to a firm, the less debt the firm can afford to use.

\section*{Loss of future financing flexibility}
- When a firm borrows up to its capacity, it loses the flexibility of financing future projects with debt.
- Proposition 4: Other things remaining equal, the more uncertain a firm is about its future financing requirements and projects, the less debt the firm will use for financing current projects.

\section*{Debt: Summarizing the Trade Off}

\section*{Advantages of Borrowing}
1. Tax Benefit:

Higher tax rates --> Higher tax benefit 2. Added Discipline:

Greater the separation between managers and stockholders --> Greater the benefit

\section*{Disadvantages of Borrowing}
1. Bankruptcy Cost:

Higher business risk --> Higher Cost
2. Agency Cost:

Greater the separation between stockholders \& lenders --> Higher Cost
3. Loss of Future Financing Flexibility:

Greater the uncertainty about future financing needs --> Higher Cost

\section*{The Miller-Modigliani Theorem}
- In an environment, where there are no taxes, default risk or agency costs, capital structure is irrelevant.
- The value of a firm is independent of its debt ratio.

Net Income Approach


\section*{Implications of MM Theorem}
- Leverage is irrelevant. A firm's value will be determinde by its project cash flows.
- The cost of capital of the firm will not change with leverage. As a firm increases its leverage, the cost of equity will increase just enough to offset any gains to the leverage.

\section*{Measuring Cost of Capital}
- It will depend upon:
- (a) the components of financing: Debt, Equity or Preferred stock
- (b) the cost of each component
- In summary, the cost of capital is the cost of each component weighted by its relative market value.
\[
\mathrm{WACC}=\mathrm{k}_{\mathrm{e}}(\mathrm{E} /(\mathrm{D}+\mathrm{E}))+\mathrm{k}_{\mathrm{d}}(\mathrm{D} /(\mathrm{D}+\mathrm{E}))
\]

\section*{Recapping the Measurement of cost of capital}
- The cost of debt is the market interest rate that the firm has to pay on ist borrowing. It will depend upon three components
(a) The general level of interest rates
(b) The default premium
(c) The firm's tax rate
- The cost of equity is
1. the required rate of return given the risk
2. inclusive of both dividend yield and price appreciation
- The weights attached to debt and equity have to be market value weights, not book value weights.

Yield


\section*{Determinants of Optimal Debt Ratios}
- Firm Specific Factors
- 1. Tax Rate
- Higher tax rates --> Higher Optimal Debt Ratio
- Lower tax rates --> Lower Optimal Debt Ratio
- 2. Pre-Tax Returns on Firm = (Operating Income) / MV of Firm
- Higher Pre-tax Returns --> Higher Optimal Debt Ratio
- Lower Pre-tax Returns --> Lower Optimal Debt Ratio
- 3. Variance in Earnings [Shows up when you do 'what if' analysis]
- Higher Variance --> Lower Optimal Debt Ratio
- Lower Variance --> Higher Optimal Debt Ratio
- Macro-Economic Factors
- 1. Default Spreads

Higher --> Lower Optimal Debt Ratio
Lower --> Higher Optimal Debt Ratio
Aswath Damodaran

\section*{8. Application Test: Your firm's optimal financing mix}
- Using the optimal capital structure spreadsheet provided:
- Estimate the optimal debt ratio for your firm
- Estimate the new cost of capital at the optimal
- Estimate the effect of the change in the cost of capital on firm value
- Estimate the effect on the stock price
- In terms of the mechanics, what would you need to do to get to the optimal immediately?

\section*{The APV Approach to Optimal Capital Structure}
- In the adjusted present value approach, the value of the firm is written as the sum of the value of the firm without debt (the unlevered firm) and the effect of debt on firm value
- Firm Value \(=\) Unlevered Firm Value \(+(\) Tax Benefits of Debt - Expected Bankruptcy Cost from the Debt)
- The optimal dollar debt level is the one that maximizes firm value

\section*{Implementing the APV Approach}
- Step 1: Estimate the unlevered firm value. This can be done in one of two ways:
- Estimating the unlevered beta, a cost of equity based upon the unlevered beta and valuing the firm using this cost of equity (which will also be the cost of capital, with an unlevered firm)
- Alternatively, Unlevered Firm Value = Current Market Value of Firm Tax Benefits of Debt (Current) + Expected Bankruptcy cost from Debt
- Step 2: Estimate the tax benefits at different levels of debt. The simplest assumption to make is that the savings are perpetual, in which case
- Tax benefits = Dollar Debt * Tax Rate
- Step 3: Estimate a probability of bankruptcy at each debt level, and multiply by the cost of bankruptcy (including both direct and indirect costs) to estimate the expected bankruptcy cost.

\section*{A Framework for Getting to the Optimal}


Aswath Damodaran

\title{
Returning Cash to The Owners: Dividend Policy
}

\author{
Aswath Damondaran
}

\section*{First Principles}
- Invest in projects that yield a return greater than the minimum acceptable hurdle rate.
- The hurdle rate should be higher for riskier projects and reflect the financing mix used - owners' funds (equity) or borrowed money (debt)
- Returns on projects should be measured based on cash flows generated and the timing of these cash flows; they should also consider both positive and negative side effects of these projects.
- Choose a financing mix that minimizes the hurdle rate and matches the assets being financed.
- If there are not enough investments that earn the hurdle rate, return the cash to stockholders.
- The form of returns - dividends and stock buybacks - will depend upon the stockholders' characteristics.

Objective: Maximize the Value of the Firm

\section*{Measures of Dividend Policy}
- Dividens Payout:
- measures the percentage of earnings that the company pays in dividends
- Dividends / Earnings
- Dividend Yield :
- measures the return that an investor can make from dividends alone
- = Dividends / Stock Price

\section*{Three Schools Of Thought On Dividends}
- 1. If
- (a) there are no tax disadvantages associated with dividends
- (b) companies can issue stock, at no cost, to raise equity, whenever needed
- Dividends do not matter, and dividend policy does not affect value.
- 2. If dividends have a tax disadvantage,
- Dividends are bad, and increasing dividends will reduce value
- 3. If stockholders like dividends, or dividends operate as a signal of future prospects,
- Dividends are good, and increasing dividends will increase value

\section*{The balanced viewpoint}
- If a company has excess cash, and few good projects (NPV > 0), returning money to stockholders (dividends or stock repurchases) is GOOD.
- If a company does not have excess cash, and/or has several good projects (NPV >0), returning money to stockholders (dividends or stock repurchases) is BAD.

\section*{Why do firms pay dividends?}
- The Miller-Modigliani Hypothesis: Dividends do not affect value
- Basis:
- If a firm's investment policy (and hence cash flows) don't change, the value of the firm cannot change with dividend policy. If we ignore personal taxes, investors have to be indifferent to receiving either dividends or capital gains.
- Underlying Assumptions:
- (a) There are no tax differences between dividends and capital gains.
- (b) If companies pay too much in cash, they can issue new stock, with no flotation costs or signaling consequences, to replace this cash.
- (c) If companies pay too little in dividends, they do not use the excess cash for bad projects or acquisitions.

\section*{The Tax Response: Dividends are taxed more than capital gains}
- Basis:
- Dividends are taxed more heavily than capital gains. A stockholder will therefore prefer to receive capital gains over dividends.
- Evidence:
- Examining ex-dividend dates should provide us with some evidence on whether dividends are perfect substitutes for capital gains.

\section*{Price Behavior on Ex-Dividend Date}

Let \(\mathrm{P}_{\mathrm{b}}=\) Price before the stock goes ex-dividend
\(\mathrm{P}_{\mathrm{a}}=\) Price after the stock goes ex-dvidend
\(\mathrm{D}=\) Dividends declared on stock
\(\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{cg}}=\) Taxes paid on ordinary income and capital gains respectively


\section*{Cashflows from Selling around ExDividend Day}
- The cash flows from selling before then are-
\[
P_{b}-\left(P_{b}-P\right) t_{c g}
\]
- The cash flows from selling after the ex-dividend day are-
\[
P_{a}-\left(P_{a}-P\right) t_{c g}+D\left(1-t_{o}\right)
\]

Since the average investor should be indifferent between selling before
the ex-dividend day and selling after the ex-dividend day -
\[
P_{b}-\left(P_{b}-P\right) t_{c g}=P_{a}-\left(P_{a}-P\right) t_{c g}+D\left(1-t_{o}\right)
\]

Moving the variables around, we arrive at the following:

\section*{Price Change, Dividends and Tax Rates}
\[
\begin{array}{lll} 
& \frac{\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{a}}}{\mathrm{D}}=\frac{\left(1-\mathrm{t}_{\mathrm{o}}\right)}{\left(1-\mathrm{t}_{\mathrm{cg}}\right)} \\
\text { If } \mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{a}}=\mathrm{D} & \text { then } & \mathrm{t}_{\mathrm{o}}=\mathrm{t}_{\mathrm{cg}} \\
\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{a}}<\mathrm{D} & \text { then } & \mathrm{t}_{\mathrm{o}}>\mathrm{t}_{\mathrm{cg}} \\
\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{a}}<\mathrm{D} & \text { then } & \mathrm{t}_{\mathrm{o}}<\mathrm{t}_{\mathrm{cg}}
\end{array}
\]

\section*{Dividend Arbitrage}
- Assume that you are a tax exempt investor, and that you know that the price drop on the ex-dividend day is only \(90 \%\) of the dividend. How would you exploit this differential?
- Invest in the stock for the long term
- Sell short the day before the ex-dividend day, buy on the ex-dividend day
- Buy just before the ex-dividend day, and sell after.
\(\square\)

\section*{The wrong reasons for paying dividends The bird in the hand fallacy}
- Argument: Dividends now are more certain than capital gains later. Hence dividends are more valuable than capital gains.
- Counter: The appropriate comparison should be between dividends today and price appreciation today. (The stock price drops on the exdividend day.)

\section*{The excess cash hypothesis}
- Argument: The firm has excess cash on its hands this year, no investment projects this year and wants to give the money back to stockholders.
- Counter: So why not just repurchase stock? If this is a one-time phenomenon, the firm has to consider future financing needs. Consider the cost of issuing new stock:

\section*{The Cost of Raising Funds}
- Issuing new equity is much more expensive than raising new debt for companies that are already publicly traded, in terms of transactions costs and investment banking fess.
- Raising small amounts is much more expensive than raising large amounts, for both equity and debt. Making a small equity issue (say S 25-S 50 million might be prohibitively expensive).

\section*{A clientele based explanation}
- Basis: Investors may form clienteles based upon their tax bracktest. Investors is high tax brackets may invest in stocks which do not pay dividends and those in low tax bracktes may invest in dividend paying stocks.
- Evidence: A study of 914 investors’ porfolios was carried out to see if their porfolio positions were affected by their tax brackets. The study found that
- (a) Older investors were more likely to hold high dividend stocks and
- (b) Poorer investors tended to hold high dividend stocks

\section*{Dividend Policy and Clientele}
- Assume that you run a phone company, and that you have historically paid large dividends. You are now planning to enter the telecommunications and media markets. Which of the following paths are you most likely to follow?
- Courageously announce to your stockholders that you plan to cut dividends and invest in the new marketes.
- Continue to pay the dividends that you used to, and defer investment in the new markets.
- Continue to pay the dividends that you used to, make the investments in the new markets, and issue new stock to cover the shortfall
- Other

\section*{Management Beliefs about Dividend Policy}
- A firm's dividend payout ratio affects its stock price.
- Dividend payments operate as a signal to financial markets.
- Dividend announcements provide information to financial markets.
- Investors think that dividends are safer than retained earnings.
- Investors are not indifferent between dividends and price appreciation.
- Stockholders are attracted to firms that have dividend policies that they like.

\section*{Determinants of Dividend Policy}
- Investment Opportunities: More investment opportunities - > Lower Dividends
- Stability in earnings: More stable earnings - > Higher Dividends
- Alternative sources of capital: More alternative sources - > Higher Dividends
- Constraints: More constraints imposed by bondholders and lenders - > Lower Dividends
- Signaling Incentives: More options to supply information to financial markets - Lower need to pay dividends as signal
- Stockholder characteristics: Older, poorer stockholders - > Higher dividends

\section*{A Measure of How Much a Company Could have Afforded to Pay out: FCFE}
- The Free Cashflow to Equity (FCFE) is a measure of how much cash is left in the business after non-equity claimholders (debt and preferred stock) have been paid, and after any reinvestment needed to sustain the firm's assets and future growth.

Net Income
+ Depreciation \& Amortization
= Cash flows from Operations to Equity Investors
- Preferred Dividends
- Capital Expenditures
- Working Capital Needs
- Principal Repayments
+ Proceeds from New Debt Issues
= Free Cash flow to Equity

\section*{A Practical Framework for Analyzing Dividend Policy}
```

 How much did the firm pay out? How much could it have afforded to pay out?
 What it could have paid out What it actually paid out
 Net Income
 Dividends
 + Equity Repurchase
 - (Cap Ex - Depr`n) (1-DR)
- Chg Working Capital (1-DR)
= FCFE

```


Firm pays out too little
FCFE > Dividends


Firm pays out too much FCFE < Dividends

What investment opportunities does the Firm have?
Look at past project choice:
Compare ROE to Cost of Equity ROC to WACC


projects

Firm should deal problem firs and then cut dividends with its investment```

