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Sensors in wireless sensor networks are required to be self-calibrated periodically during their prolonged
deployment periods. In calibration planning, employing intelligent algorithms are essential to optimize
both the efficiency and the accuracy of calibration. The Minimum-Cost Bounded-Error Calibration Tree
(MBCT) problem is a spanning tree problem with two objectives, minimizing the spanning tree cost and
bounding the maximum post-calibration skew. The decision version of the MBCT problem is proven to be
NP-Complete. In this paper, the GAWES algorithm is presented as a novel genetic algorithm based solution
to the optimization version of the MBCT problem. GAWES adopts extreme efficient solution generation
within the genetic algorithm to improve the search quality. It is demonstrated through experimentation
that GAWES is superior to the existing state of the art algorithm, both in energy efficiency and calibration
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1. Introduction

Technological advances in Micro-Electro-Mechanical Systems
(MEMS) have brought the network of self-configurable widely
deployed sensor nodes, as wireless sensor networks, in our daily
lives. Equipped with low power radios, nodes in wireless sensor
networks are able to perform various sensing tasks and facilitate
an ad hoc network to aggregate and extract useful data from the
deployed environment. As a consequence of their flexible design
and wireless operability, wireless sensor networks are capable of
performing tasks that are not suitable or affordable for humans,
such as remote area monitoring [1], underwater monitoring [2],
and deployments in hazardous environments [3,4]. To tackle these
deployment constraints, wireless sensor networks are designed to
operate in a self-configurable manner where manual configuration
is not a viable option. As each individual sensor unit operates on
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low power battery, energy efficiency is the most essential con-
straint for all the algorithms that need to be developed for sensor
networks. The total lifetime of the sensor network depends on the
lifetime of each individual sensor node in the network. Therefore,
algorithms deployed on wireless sensor networks should not only
use less power, but also be well distributed to avoid energy deple-
tion on a single node.

Periodic calibration of each individual sensor is a critical prob-
lem in wireless sensor networks. As manual calibration is not an
option after deployment, these sensors should self-calibrate them-
selves using nearby sensors as references. However, sensors need
to communicate during calibration and wireless communication is
one of the most energy consuming tasks for a sensor node. There-
fore, an efficient and accurate self-calibration algorithm is essential
for sensors that are deployed in remote areas for extended periods
of time.

Calibration in wireless sensor networks poses many challenges
[5-9]. A list of these challenges includes the inability to phys-
ically access sensors in most scenarios, their massive number,
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and their energy constraints. To overcome these difficulties, re-
searchers have proposed methods to calibrate sensors without any
human intervention using peer based iterative calibration [10-
14]. However, iterative calibration algorithms also introduce a new
set of challenges to the sensor network community. One such
major challenge is to calibrate the network to achieve minimum
calibration error using minimum energy in exchange.

Minimum-Cost Bounded-Error Calibration Tree (MBCT) prob-
lem[15]is based on iterative calibration of nodes in wireless sensor
networks. In these networks, energy usage is a tight constraint.
Therefore, calibrating the sensor network by using the minimum
communication cost and yet get a reasonable accuracy on the
calibration is a critical problem. However, MBCT problem is generic
enough to be applied to other domains. In its abstract form, the
problem optimizes the cost of the spanning tree, as well as the cost
of reaching from each vertex to the root of the tree, where each
vertex has an associated cost value.

The main contribution of this paper is a novel genetic algorithm
based solution to the optimization version of the MBCT problem.
In this work, a method to find the extreme efficient solutions after
the crossover stage of the proposed genetic algorithm is employed.
Consequently, the search is more efficiently directed to the ideal
point that minimizes both the energy usage and the calibration er-
ror. As a result, through experimentation, this paper demonstrates
that the proposed algorithm outperforms the existing state of the
art in terms of both energy efficiency and calibration accuracy.

The rest of the paper is organized as follows, related work is
presented in Section 2. In Section 3 MBCT problem definition is pre-
sented. Section 4 outlines extreme efficient solution calculation. In
Section 5 the proposed genetic algorithm based solution is given,
and experimental results are presented in Section 6. Finally Section
7 concludes the paper.

2. Related works

Calibration in sensor networks is an essential task and each
sensor needs to be calibrated periodically [6,8]. Results of real
world tests for calibration are reported in [7,9]. As sensors are
expected to operate prolonged amounts of time after deployment,
efficient periodic calibration is a critical task for the lifetime of
the network. The challenges with respect to periodic calibration
in wireless sensor networks are reported in [5].

Researchers have proposed parametric calibration methods
[10-14] as an alternative to traditional calibration methods. In
parametric calibration, a calibration function is used to map the
reported output values of the reference sensor to the input values
of the current sensor. Therefore, each sensor can self-calibrate
parametrically based on a presumed reference sensor nearby,
without any physical interaction.

There are various representations in the literature for encoding
spanning trees in evolutionary algorithms. These methods can
be listed as Characteristic Vectors [16], Predecessor Coding [17],
Priifer Numbers [18], Blob Code [19], Link-and-Node Biasing [17],
Network Random Keys [20,21], and Edge-Sets [22]. A compara-
tive analysis of these methods are presented in [22] on various
criteria including locality, heritability, feasibility, and time-and-
space complexity. It is reported in [22] that Edge-Sets is superior
to the rest of the methods listed. [22] also discusses three different
methods in order to create random spanning trees for initializ-
ing the population and performing the crossover. The methods
are listed as PrimRST, KruskalRST, and RandomWalkRST. PrimRST
uses a modified version of Prim’s spanning tree algorithm and
is biased towards creating star topologies. RandomWalkRST uses
a random walk based strategy and is biased to create path like
topologies. KruskalRST uses a modified version of Kruskal’s span-
ning tree algorithm and creates trees that are in between star and

path like topologies. The GAWES algorithm proposed in this pa-
per uses Edge-Sets representation as chromosome encoding, and
KruskalRST method to populate the initial population and perform
Crossover.

The first definition and complexity result of MBCT problem
appeared in [15]. A genetic algorithm based heuristic algorithm
(GA) is also proposed in [15] to solve the optimization version
of the MBCT problem. The efficiency of GA is evaluated using
various fitness functions on a set of randomly generated graphs.
GA uses Edge-Sets representation for chromosome encoding and
a modified version of Kruskal minimum spanning tree algorithm
(KruskalRST) is used to create random chromosomes and perform
crossover. The suggested parameters for GA algorithm is reported
in[15] as aniteration size of 50 000, mutation rate of 0.1, and initial
population size of 400.

MBCT problem seeks an efficient answer to the bicriteria span-
ning tree problem, where one needs to minimize both edge cost
and maximum post-calibration skew of the spanning tree. In this
sense, MBCT has similarities to hop constrained [23] and rooted
distance constrained [24] spanning tree problems. In hop con-
strained spanning tree problem, the objective is to minimize the
spanning tree cost given that the hop distance of each node to
the root is less than some predefined constant. Similarly, in rooted
distance constrained spanning tree problem, the objective is to find
the minimum cost spanning tree given that delay of each node,
associated with each edge, is less than a predefined distance value.
In both hop constrained and rooted distance constrained spanning
tree problems, both of the costs that needs to be minimized are on
the edges. In MBCT, having the second cost on the vertex changes
the definition and the characteristic of the problem. Therefore,
MBCT problem clearly distinguishes itself from existing hop con-
strained and rooted distance constrained spanning tree problems.

3. The problem definition

The Minimum-Cost Bounded-Error Calibration Tree problem
was first defined in [15]. Formal definition of the MBCT problem
was stated in [15] as:

Definition 3.1 (MBCT[15]). “Given a wireless sensor network mod-
eled as an undirected graph G(V, E), and a designated reference
node r € V, where each e € E is assigned distance values
d. > 0, and each v € V is associated with a maximum random
measurement error €,, the MBCT problem is defined as finding a
spanning tree over G rooted at r with total edge cost not greater
than a constant C > 0, while the post-calibration skew of each
sensor v € V is bounded by a positive constant k”.

The MBCT problem was shown to be NP-complete in [15], and
a genetic algorithm based heuristic was proposed in the same
work for the optimization version of the problem. The optimization
version of the MBCT problem minimizes both the total cost value
and the post-calibration skew.

Fig. 1 (a) presents an example graph, where each node i has
an associated maximum calibration error (¢;), and each edge j has
an associated cost ¢;. Sp is marked as the pre-calibrated sensor
with zero calibration error. Post-calibration skew of each node is
the sum of the absolute maximum errors of each node along the
path to node Sy. For example, in Fig. 1 (b), node S, is connected
to S through a path passing through node Ss. Therefore, the post-
calibration skew of node S, is then the sum of the calibration errors
of nodes S, S3, and Sy, which is equal to |£;] = 2+ 8 + 0 = 10.
Fig. 1 (b) shows the minimum spanning tree based on edge costs,
where the total cost is 5, post-calibration skew of each node is
given as [&1] = 7, |&] = 10, |&| = 8, & = 9, 1&| = 1,
and the maximum post-calibration skew is 10. Fig. 1 (c) shows
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(b)

Fig. 1. Example graph (a), minimum spanning tree based on edge costs (b), spanning tree based on minimum maximum post-calibration skew and edge costs (c).

the spanning tree with the minimum possible maximum post-
calibration skew and the minimum total cost, where the total cost
is 8, post-calibration skew of each node this time is given as |&{| =
7,1&| = 4, |&3] = 8, |&4] = 2, |&] = 1, and the maximum post-
calibration skew is 8. As the absolute calibration error of node Ss is
8, the maximum post-calibration skew cannot get any lower than
this value. This example clearly demonstrates that both the total
cost and the calibration accuracy can be controlled in a network by
adjusting the topology of the spanning tree.

This paper proposes a new genetic algorithm based solution
to the optimization version of MBCT problem. The novel part of
the newly proposed algorithm is the use of extreme efficient solu-
tions within the genetic algorithm. Details of the extreme efficient
solution generation are described in Section 4 and the genetic
algorithm based solution is presented in Section 5.

4. Extreme efficient solution generation
Extreme efficient solution is defined in [25] as:

Definition 4.1 (Extreme Efficient Solution [25]). “In a multiobjective
linear program,

min{Cx : Ax = b, x > 0},
the set of extreme efficient solutions are the integer solutions of
the linear program

min Z Ajcjx:Ax:b,xzo s

where,zjgﬂ)»j =1,1>0j=1,...,n"

[26,27] present methods to create new extreme efficient solu-
tions using existing extreme efficient solutions on multi-criteria
spanning tree problems. The SearchXP algorithm proposed in this
paper adapts the extreme efficient solution generation methods
in [26,27] to the MBCT problem. Given two existing extreme ef-
ficient solutions S1(x1, y1) and S>(x;, ¥»), a new extreme efficient
solution is the furthest away point to the line passing over S; and
S,, which is a minimum spanning tree of the graph assigned the
costs for each edge e as f(e) =f1(e)(S — S)) + f2(e)(Sy — S¥). For
an edge e, f'(e) represents the cost of edge e, S{ and 5%2’ represent
the value of the second criteria of the extreme efficient solutions
S; and S,. Again f2(e) represents the error of the outgoing vertex
on edge e and S§ and S5 represent the value of the first criteria of
the extreme efficient solutions S; and S,. The pseudocode of the
SearchXP algorithm is presented in Fig. 2. In SearchXP algorithm, a
queue of extreme efficient solution pairs is created and initiated
with the given solutions S; and S,. As long as the queue is not
empty, the algorithm iteratively selects a new pair from the queue.
The formula in line 6 is used to modify the costs and assign these
new edge costs to the graph to create a single criteria graph. In line
7, a modified version of Prim’s minimum spanning tree algorithm

|&3|=8

les|=1

leal=1

is used to solve the single criteria problem resulting a new extreme
efficient solution S with an accompanying spanning tree. If S is not
equal to S, and Sp, and new solution pairs {S,, S} and {S, Sy } have not
been seen before, these extreme efficient solution pairs are added
to the queue. Upon completion, the SearchXP algorithm returns a
list of all the extreme efficient solutions evaluated along with their
accompanying spanning trees.

The proposed genetic algorithm uses the SearchXP extreme
efficient solution generation algorithm after the crossover stage.
The crossover candidates are treated as extreme efficient solutions
to generate new extreme efficient solutions, thus new chromo-
somes. Newly generated extreme efficient solutions span the area
between the two best crossover candidate solutions, hence, guide
the search to the ideal point at which both criteria are minimized.

5. Heuristic solution

In this section, details of the proposed genetic algorithm based
solution to the MBCT problem is described, which is named Genetic
Algorithm With Extreme Solutions (GAWES) throughout the paper.
In the optimization version of the MBCT problem, the objective
is to minimize both the total edge cost and the post-calibration
skew of the final spanning tree. Therefore, optimization version
of the problem has two criteria. The main novelty of GAWES is in
combining the existing extreme efficient solutions to create new
extreme efficient solution after the crossover stage of the genetic
algorithm. GAWES algorithm’s search capacity is greatly enhanced
by generating multiple extreme efficient solutions from the best
chromosomes. As a result, superior solutions compared to the state
of the art [15] are achieved. Details of the GAWES algorithm are
described below in six stages, chromosome encoding, chromosome
generation, initiating a population, crossover, calculating extreme
efficient solutions, and mutation.

5.1. Chromosome encoding

Each chromosome in GAWES represents a valid spanning tree
solution to the problem. Therefore, chromosomes are encoded
using the Edge-Sets [22] representation as a list of edges given as
vertex pairs of the input graph. Since a spanning tree on a graph of
|V| vertices has |V — 1| edges, each chromosome in GAWES has a
fixed size of |V — 1].

5.2. Chromosome generation

During the crossover and mutation phases, altered chromo-
somes might not represent a valid spanning tree. Therefore, the
chromosome generation function is used in these stages to recre-
ate a valid spanning tree from the given altered chromosome.
In the chromosome generation phase, a modified version of the
Kruskal minimum spanning tree algorithm (KruskalRST [22]) is
used. Contrary to the Kruskal algorithm, the non cycle creating
edges within the chromosome is kept, and the rest of the edges are
randomly added to the chromosome without any ordering until a
valid spanning tree is generated.
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1: List < Solution >+ ()
2: Q<+ 0

3: Q.enqueue({S1,S2})

4: while Q not empty do

SEARCHXP (GRAPH G, SOLUTION S7, SOLUTION S2)

5:  {Sa,Sp} = Q.dequeue()

6:  Compute new costs f*(e)(SY — SY) + f°(e)(S§ — S%)
7 Solve MST based on new costs S=(x,y)

8 if (S#S.) A (S#S,) then

9: List < Solution > .add(S)

10: if Solution pair {Sa, S} not seen before then
11: Q.enqueue({Saq, S})

12: if Solution pair {5, S} not seen before then
13: Q.enqueue({S, Sp})

14: return List < Solution >

Fig. 2. The pseudocode of the SearchXP algorithm.

5.3. Initiating a population

The population is initiated with random chromosomes by gen-
erating random spanning trees and encoding them as chromo-
somes. The population size is controlled by a parameter within the
GAWES algorithm.

5.4. Crossover

In the crossover stage, candidates are selected using Roulette
Wheel Selection algorithm [28]. From the candidate parent chro-
mosomes, a new child chromosome is created. The newly created
child chromosome is inserted into the population, and the chromo-
some with the worst fitness value is removed from the population.
In the crossover stage, the child gets each of its genes from one of
the parents with equal probability. Therefore, as a result, a random
chromosome is created from the best fitting parents. However, the
crossover stage described does not guarantee that the resulting
child chromosome be a valid spanning tree, therefore an acceptable
solution to the MBCT problem. In order to fix the chromosome,
the chromosome generation process described in Section 5.2 is
applied, which converts the child chromosome to a spanning tree
solution.

5.5. Calculating extreme efficient solutions

The main novelty in GAWES, compared to the existing state
of the art genetic algorithm (GA) [15], is the use of extreme ef-
ficient solutions. In GAWES, after the crossover stage the two
parent chromosomes are treated as extreme efficient solutions.
New extreme efficient solutions are created from these two parent
solutions using the SearchXP algorithm described before in Section
4.The newly generated solutions then are added to the population.
Therefore, at each iteration new extreme efficient solutions en-
coded as chromosomes are added to the population. The addition
of these efficient solutions enhances the borders of the search
towards the ideal point, depicted as the minimum of both criteria.

5.6. Mutation

In the mutation phase, with a given low probability, a random
edge is removed from the solution chromosome. Again, to fix the

POPULATESOLUTIONS(SOLUTION S1, SOLUTION Sb2)
1: List < Solution > = SEARCHXP(G, Si1, S2)
2: for Each S in List < Solution > do
3: (g = CreateChromosome(S)

4:  Population.add(Cys)

Fig. 3. The pseudocode of the PopulateSolutions function.

Table 1
Distributions of the parameters used in the datasets.
Dataset_A Dataset_B Dataset_C
Graph size 25-1000 100-500 100
Node degree dist. normal uniform normal or exponential
Edge weight dist. normal uniform normal or exponential
Calib. error dist. uniform uniform normal or exponential

chromosome, the chromosome generation function defined in Sec-
tion 5.2 is used. The mutation rate is controlled with a parameter
in the GAWES algorithm.

The pseudocode of the PopulateSolutions function and the
GAWES algorithms are presented in Figs. 3 and 4, respectively. The
PopulateSolutions function generates new extreme efficient solu-
tions from the two given solutions and adds these new solutions
to the population. PopulateSolutions function is called in lines 7 and
13 in GAWES. In line 7, extreme efficient solutions generated from
the two solutions that optimize the first and the second criteria are
added to the population. In line 13, two solutions depicted by the
two parent chromosomes during the crossover phase are used to
create new solutions.

Inlines 2-4 of the GAWES algorithm, the population is randomly
created. In lines 5-7, new solutions are generated from the exist-
ing two extreme efficient solutions and added to the population.
GAWES algorithm runs for a fixed number of iterations defined
as a parameter. In line 10, Roulette Wheel Selection algorithm is
used to select two parent chromosomes. Crossover is performed in
line 12, and new extreme efficient solutions are created in line 13.
Mutation is called, if necessary, in lines 14-15, and chromosome
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GAWES(GRrAPH G)

1:

2: for L=1 to PopulationSize do
3:
4:  Population.add(C)
5:
6:
7: PopulateSolutions(S1,S2)
8: BestFitnessScore <+ oo
9: for I=1 to NumberOflterations do
10:
11:

/* Initiate the population */

C = CreateRandomChromosome(G)

S1 = Solution based on first criteria

S = Solution based on second criteria

{C1,C2} = RouletteWheelSelection(Population)

Cworst = SelectWorstChromosome(Population)

87

12:  CnNew = Crossover(C1,C2)

13:  PopulateSolutions(C1.sol,Cs.s0l)

14:  if RandomNumber < MutationProbability then
15: CNew = Mutation(Cnew)

16: /* ChromosomeGeneration makes sure Cneyw

17 CnNew = ChromosomeGeneration(Cnew,G)

18:  BestFitnessScore = min(BestFitnessScore,

19:  Population.add(Cnew)
20:  Population.remove(Cworst)

21: return BestFitnessScore

is a spanning tree */

GetFitnessScore(Cnew))

Fig. 4. The pseudocode of the GAWES algorithm.

generation routine is called to create a valid spanning tree from
the new chromosome in line 17. Best fitness score is updated in
line 18, new chromosome is inserted into the population in line
19, and the worst chromosome found in line 11 is removed from
the population in line 20.

6. Experimental results

In this section, results of the simulations conducted to compare
the performance of GAWES with the state of the art genetic algo-
rithm (GA) [15] are presented. Both algorithms solve the optimiza-
tion version of the MBCT problem and the objective is to minimize
both the total cost and the post-calibration skew of the spanning
tree. The experimental results clearly demonstrate that GAWES is
superior to GA, especially in larger graphs.

The organization of the experimental results section can be out-
lined as follows. In Section 6.1, properties of the datasets and the
fitness functions used in the experiments are described. Parameter
tuning for GAWES is discussed in Section 6.2, and the results of the
simulations comparing GAWES and GA are presented in Section 6.3.

6.1. Datasets and fitness functions

The experiments are conducted on three different datasets with
various node degree, edge weight, and calibration error distribu-
tions. Each dataset includes multiple graph instances with different
sizes. The names and the parameters of the graphs used in the
experiments are presented in Table 1. During the construction of

the graph instances, only positive integers are used as node degree,
edge weight, and calibration error values.

Dataset_A is the dataset used in [15]. The graph sizes in
Dataset_A range from 25 to 1000. Node degree distribution is
selected as normal distribution with an average of 5 nodes and
a standard deviation of 2 nodes. Edge weight distribution is also
selected as normal distribution with an average of 10 and standard
deviation of 5. For calibration error, uniform distribution is used
with a minimum value of 1 and maximum value of 10. To further
evaluate the performance of GAWES and GA, in addition to the
existing dataset, two new datasets with various configurations
are created in this paper. The parameters of the new Dataset_B
and Dataset_C are also presented in Table 1. In Dataset_B, graphs
with sizes varying from 100 to 500 are created. The node degree
distribution in this dataset is set as uniform with minimum 4 and
maximum 8 nodes. Edge weight distribution is selected as uniform
also with values between 1 and 10. A uniform distribution is used
for calibration error of nodes having values of minimum 1 and
maximum 10. In Dataset_C, graphs with 100 nodes are created
with two different random distributions for edge weight, node
degree, and calibration error. Node degree distribution is selected
as normal or exponential. In normal distribution the average value
is selected as 8 and the standard deviation is 4. In exponential
distribution A is selected as 1 and the result is scaled with a
scalar value 8. Edge weight distribution is selected as normal or
exponential. In normal distribution the average value is selected
as 8 and the standard deviation as 4. In exponential distribution
A is selected as 1 and the result is scaled with a scalar value of 8.
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Fig. 5. y-axis displays the fitness value of the corresponding fitness functions XF4 (a), and XFg (b) for various number of iterations of GAWES.

Table 2
Parameters and formulas of fitness functions used.

Parameter name Explanation

MIN_COST Minimum spanning tree cost
MAX_COST Maximum spanning tree cost
MIN_ERROR Minimum post-calibration skew
MAX_ERROR Maximum post-calibration skew
norm_cost X CoSTMIN 05

norm_error (error —MIN_ERROR)x 100

(MAX_ERROR—MIN_ERROR)

Fitness function name Fitness Function Formula

(cost—MIN_COST)? (error—MIN_ERROR)?
Fa, XFy MIN_COST + MIN_ERROR
Fg, XFg 0.1 x norm_cost + 0.9 x norm_error

Calibration error distribution is selected as normal or exponential.
In normal distribution the average value is selected as 0 and the
standard deviation is selected as 3. In exponential distribution A is
selected as 1 and the result is scaled with a scalar value of 10.

For each graph, MIN_COST represents the minimum spanning
tree cost of the graph based on edge costs only and MIN_ERROR
represents the minimum error tree cost of the graph based on
post-calibration skew values only. Therefore, for each graph, the
ideal solution to achieve is to find a spanning tree with {MIN_COST,
MIN_ERROR} parameters. Again, MAX_COST and MAX_ERROR rep-
resent the upperbounds for the total cost and post-calibration skew
for each graph. In order to perform a fair comparison among the
algorithms, these parameters are used to calculate two different
fitness functions for each algorithm, inline with the ones used
in [15]. The fitness functions and the parameters used in these
fitness functions are presented in Table 2.

6.2. Parameter tuning for GAWES

In this section, experiments are conducted to find the best initial
population size and mutation probability parameters for GAWES.
All the experiments are conducted on Dataset_A. The graphs used
in the experiments have sizes 250, 500, 750, and 1000. Each pa-
rameter tuning experiment is conducted 10 times and the average
results are reported. In the first experiment, GAWES algorithm is
tested with various iterations to find the best iteration count. The
results of the experimentation on all four graphs for the fitness
functions XF4 and XFp are presented in Fig. 5. In this experiment, the
initial population size is set to 200, mutation probability is set to
0.05, and the change of fitness values with iteration counts varying
from 5000 to 100000 is reported. Fig. 5 clearly demonstrates
that the fitness value decreases with increasing iteration counts.
Consequently, increasing the iteration count increases the runtime
of the algorithm.

In the next experiment, GAWES is tested with various initial
population sizes ranging from 200 to 5000. The iteration count for
this experiment is selected as 100 000, and the mutation probabil-
ity is selected as 0.3. It can be observed from Fig. 6 that the fitness
values increase for population sizes larger than 400.

Fig. 7 shows the effect of using various mutation probabilities
on the fitness value of the GAWES algorithm. In this experiment,
the iteration count is selected as 40 000 and the initial population
size is selected as 1000. As seen from the figure, increasing the
mutation probability slightly increases the fitness value, therefore
is not preferred.

Initial experiments on parameter tuning suggest a population
size of 400 and mutation probability of 0.1, along with an iteration
count between 50000 and 100 000. In order to identify the best
combination of values a new experiment is conducted. In this new
experiment all combinations of four different mutation rate values
(0.001, 0.005, 0.05, 0.1), three different iteration counts (20 000,
50000, 100 000), and three different population size values (200,
400, 800) are tested on four different graphs. All experiments are
conducted 100 times and the average values and the standard
deviations are reported in Table 3. The best average values for each
fitness function on each graph is reported as bold. Based on the
results, parameter set of mutation rate 0.001, iteration count of
100 000, population size of 400 has the best results on 7 out of 8
fitness functions. Examining mutation rates, the results of 0.001
and 0.005 are close to each other, while 0.001 has more best results.
In all experiments with iteration count 100 000, population size of
400 gives better results than 200 and 800.

6.3. Comparing GAWES with GA

We are now ready to give the performance comparison re-
sults of GAWES and GA over the three existing datasets. Fitness
functions, input graphs, iteration counts (or CPU runtimes), initial
population sizes and, mutation probabilities are given as input
parameters for both genetic algorithms. The details of these pa-
rameters are described in Table 4. In the performance comparisons,
two different parameter sets are used for GAWES. The first set,
depicted as GAWES, uses the optimal parameters of GA as reported
in[15] with initial population size selected as 400 and the mutation
probability is set to 0.1. The second set, depicted as GAWES*, uses
the best parameters selected in the parameter tuning experiments
in Section 6.2 with initial population size selected as 400 and the
mutation probability selected as 0.001. On each iteration, GAWES
investigates extreme efficient solutions and uses more CPU time
than GA. Therefore, to be fair in comparison, experimentation for
both algorithms are done for a fixed amount of time for each
graph type and the results are reported. For this reason, in each
experiment, the experimentation times are the same for both al-
gorithms, however, number of iterations vary. Each experiment is
conducted 100 times and the minimum, maximum, average results
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Table 3
Results of parameter tuning experiments for GAWES.
Mut Iter Pop 250 500 750 1000
XFa XFp XFa XFg XFa XFg XFa XFg
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
0.001 20000 200 85.96 414 206 003 211.10 560 212 0.03 306.02 8.39 204 003 492.08 1836 211 0.05
0.001 20000 400 103.63 474 2.16 0.04 226.53 5.88 2.22 0.02 316.64 6.69 2.10 0.02 522.38 13.80 2.22 0.04
0.001 20000 800 11725 0.00 2.68 0.07 27692 024 247 0.02 40968 3.89 233 0.02 66034 991 244  0.02
0.001 50000 200  79.05 459 2.02 004 20649 504 209 003 30371 9.14 202 0.03 48165 2058 207 0.04
0.001 50000 400  83.00 391 202 003 20492 520 211 0.02 29320 6.83 203 0.02 467,53 1388 2.08 0.03
0.001 50000 800 11498 3.16 224 005 24397 762 226 002 32592 7.08 213  0.02 547.16 2147 222 0.04
0.001 100000 200 74.13 406 2.00 0.04 20643 486 2.09 0.03 30330 9.67 202 0.03 47743 2251 207 0.06
0.001 100000 400 73.87 325 197 003 19953 432 208 0.02 287.67 8.00 201 0.02 45188 1449 204 0.03
0.001 100000 800  95.23 6.12 2.08 004 21971 586 214 002 28560 7.75 203 0.02 47515 1828 208 0.04
0.005 20000 200 85.98 412 206 003 21063 524 211 0.03 30790 8.94 204 003 49153 1718 2.11 0.05
0.005 20000 400 10439 420 2.17 0.04 22578 536 221 002 31798 6.89 211 0.02 52234 1324 222 0.04
0.005 20000 800 117.25 0.00 2.70 0.07 276.87 0.41 2.48 0.03 408.57 5.14 2.33 0.02 661.66 9.99 2.44 0.02
0.005 50000 200 78.15 395 202 004 20727 485 209 0.03 30378 9.03 202 0.03 48368 1865 208 0.06
0.005 50000 400 83.49 366 203 003 20535 554 211 0.02 29354 645 202 0.02 466.75 1461 2.08 0.03
0.005 50000 800 11484 330 223 004 24284 751 226 0.02 32738 655 213 0.02 550.89 1897 222 0.03
0.005 100000 200 75.24 423 2.00 004 20636 493 208 003 30281 9.92 203 0.03 47687 2064 208 0.06
0.005 100000 400 73.89 353 197 004 19981 434 208 0.02 289.87 836 201 0.02 45241 1329 204 0.03
0.005 100000 800 96.16 627 208 004 22069 672 213 0.02 284.89 6.13 203 0.02 47237 1802 2.09 0.03
0.05 20000 200 86.04 447 206 003 21135 555 212 003 30869 10.16 205 0.03 49812 1774 212 0.05
0.05 20000 400 107.05 439 219 0.04 22979 6.01 224 002 32592 6.79 212 002 53319 1522 225 0.03
0.05 20000 800 11724 0.05 271 0.07 27691 031 249 0.03 40960 4.50 234 002 66429 7.83 245 0.02
0.05 50000 200 79.31 4.36 2.02 0.03 207.30 4.46 2.09 0.04 303.59 9.04 2.03 0.03 481.55 16.64 2.08 0.05
0.05 50000 400 85.68 398 204 003 20735 546 212 0.02 296.82 7.88 203 0.02 47265 1419 209 0.03
0.05 50000 800 11681 133 227 0.04 24879 692 228 0.02 337.01 7.37 215 0.02 556.14 1745 225 0.03
0.05 100000 200 76.29 392 200 0.03 20414 474 209 0.03 30296 9.26 203 0.03 475.03 16.15 2.07 0.05
0.05 100000 400  75.07 340 198 0.03 20058 429 208 0.02 29198 7.22 201 0.02 45318 1454 205 0.03
0.05 100000 800  99.97 543 210 0.04 22319 6.05 215 0.02 29064 6.45 203 0.02 48148 1760 2.11 0.04
0.1 20000 200 89.27 468 207 003 21209 497 213 0.03 31410 8.64 205 0.03 49921 1658 216 0.05
0.1 20000 400 108.70 3,70 221 0.04 23450 6.16 225 002 33202 730 2,14 0.02 54494 1483 227 0.04
0.1 20000 800 11724 0.05 273 0.07 27693 0.18 250 0.03 41024 3.96 236 0.02 667.88 5.68 247  0.02
0.1 50000 200 81.17 395 202 003 20624 448 209 003 30679 942 204 003 48565 1762 209 0.05
0.1 50000 400 87.30 432 2.06 0.03 208.93 6.83 2.13 0.02 300.37 8.50 2.04 0.02 481.05 13.20 2.11 0.03
0.1 50000 800 11686 1.18 230 0.04 25512 585 229 0.02 34561 7.21 217 002 56760 1711 229 0.03
0.1 100000 200 77.04 391 199 0.03 2046 567 2.08 003 30462 1022 2.03 004 47367 1663 2.07 0.06
0.1 100000 400  76.95 351 200 003 20137 422 209 002 29230 752 201 0.02 46168 1398 2.05 0.03
0.1 100000 800 10261 476 2.13 0.04 22740 5.16 216 002 29775 738 205 0.02 489.18 1983 214 0.03




90

Table 4
Parameters of GAWES and GA.
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Parameter name Description

Range

Fitness function
Runtime

Iteration

Population size
Mutation probability

Number of iterations
Initial population size

Fitness function used in the algorithms as described in Table 2
Fixed runtime in seconds for each algorithm

Genetic algorithm mutation probability

Fa, F, XFs, XFg
(graph_size x 2)seconds

varies with runtime
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Fig. 8. Results of the GAWES and the GA algorithms for all fitness functions on each graph in Dataset_A.

and the standard deviations are reported. Experiments are run on
a computer with 2 GHz Intel Xeon Gold 6138 CPU and 512 GB RAM.

Fig. 8 plots the results of the experimentation on Dataset_A.
The best results of both algorithms for all fitness functions on
each graph are displayed in respective figures. In each figure, left
axis shows post-calibration skew and bottom axis shows total

calibration cost for each spanning tree result. The values of the
fitness functions F4 and Fp are given as the results of the GA
algorithm while the values of XF4 and XF are given as the results
of the GAWES algorithm. In the figures, a solution x is superior to
another solution y if and only if both total calibration cost value
and post-calibration skew value of x is smaller than the respective
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Table 5
Results of GAWES and GA on graphs in Dataset_A. Time values are given in seconds.
Graph size 25 50 100 250 500 750 1000
MIN_COST 133 218 543 1368 2714 4076 5439
MIN_ERROR 13 15 16 20 22 19 26
CPU TIME 50s 100s 200s 5008 1000s | 1500s | 2000s
Cost 142 254 697 1981 4222 6618 | 8899
Error 16 23 37 47 79 86 110
Fa
Avg Fy 1.67 22.18 | 86.42 | 362.83 | 1070.42 1973.48| 2602.68
Std Fa 0.20 3.14 5.95 17.74 | 31.37  49.96 | 61.46
GA Cost 160 320 847 2208 | 4554 6927 | 9434
Error 14 18 25 43 63 e 85
Fp
Avg Fg 2.51 4.42 5.62 5.83 5.92 5.81 5.68
Std Fp 0.09 0.33 0.22 0.16 0.11 0.10 0.09
Cost 138 269 665 1653 3412 5065 | 6911
Error 17 24 28 33 37 42 51
XFy
Avg XFy | 2.43 24.34 | 40.72 | 74.64 | 198.81 290.37 | 454.56
Std XFa | 0.45 3.13 1.56 3.34 4.35 8.37 13.24
. |
GAWES Cost 161 |33 | 725 | 1750 | 3426 5102 | 6952
Error 14 15 18 23 35 39 43
XFp
Avg XFp | 2.66 247 2.36 1.96 2.06 2.01 2.03
Std XFp | 0.12 0.10 0.03 0.03 0.02 0.02 0.04
Cost 141 259 661 1636 3413 5066 | 6891
Error 17 25 28 35 37 42 52
XFy
Avg XFy | 2.50 22.30 | 40.77 | 71.34 | 198.62 287.96 | 449.22
Std XF4 | 0.39 3.11 1.64 3.28 4.10 7.25 14.44
AWES*
GAWES Cost 161 334 724 1688 3453 5092 | 6910
Error 14 15 18 27 33 39 43
XFp |
Avg XFp | 2.63 2.43 2.36 1.94 2.06 2.00 2.02
Std XFp | 0.13 0.11 0.03 0.02 0.02 0.02 0.04

values of solution y. As seen in the figures, except the smallest
graphs (n25 and n50), GAWES results are superior compared to GA
results for fitness functions F4/XF, and Fg/XFg. As the graph size
increases, the difference in the results also dramatically increase,
where GAWES performs much better than GA for both fitness
functions F4/XF4 and Fg/XFg. The results are presented in more
detail in Table 5, including the runtime in seconds for each run
of the algorithms, average and standard deviation for all fitness

values, and the GAWES* results. Comparing GAWES with GAWES*,
it is observed that based on the average fitness values GAWES*
is superior on the datasets with size 50, 250, 750, and 1000. A
more detailed result of the experiments including the minimum,
maximum, average values and the standard deviations are pre-
sented in Fig. 9 for both fitness functions. The vertical lines mark
the minimum and the maximum values and the boxes display the
average values along with the standard deviations. Fig. 9(a) plots
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'lgzls)tl:l:tfsi of GAWES and GA on graphs in Dataset_B. Time values are given in seconds.
Graph size 100 200 300 400 500
MIN_COST 177 379 576 746 929
MIN_ERROR 18 19 18 23 21
CPU TIME 200s | 400s | 600s | 800s | 1000s

Cost 275 675 1092 | 1484 | 1967
Error 39 54 62 80 92
Fa Avg Fy 104.84 | 350.49 | 655.21 | 983.01 | 1509.83
Std Fa 7.25 15.60 | 25.47 | 33.18 | 43.14
GA Cost 354 830 1288 | 1806 | 2238
Error 30 43 49 55 71
e Avg Fg | 5.66 6.30 6.24 6.19 6.31
Std Fg 0.18 0.15 0.13 0.11 0.11
Cost 261 496 816 1022 | 1306
Error 29 36 32 42 45
Hha Avg XFa | 56.03 | 61.09 | 120.22 | 131.91 | 196.19
Std XFa | 3.07 3.53 5.89 4.41 5.89
GAWES Cost 276 | 528|837 | 1062 | 1327
Error 21 29 28 35 41
XFg
Avg XFp | 2.28 2.18 2.11 1.91 2.06
Std XFg | 0.05 0.03 0.03 0.02 0.02
Cost 264 496 810 1020 | 1302
Error 29 34 31 42 45
XFy
Avg XFa | 55.77 | 55.92 | 112.43 | 127.08 | 193.08
Std XF4 | 2.45 3.21 4.31 4.08 6.85
GAWES* Cost 276 | 584 | 854 | 1060 | 1315
Error 21 24 26 35 41
XFp
Avg XFp | 2.25 2.18 2.07 1.90 2.04
Std XFg | 0.04 0.03 0.03 0.02 0.03

the result for fitness function F4/XF4. For graph size 25, minimum,
maximum, average, and standard deviation of GA are 1.30, 2.17,
1.67, and 0.20, respectively. Again for graph size 25, the GAWES
results are 1.42, 3.61, 2.43, and 0.45, respectively. For graph size
50, minimum, maximum, average, and standard deviation of GA are
10.21,27.78,22.18, and 3.14, respectively. Again for graphs size 50,
the GAWES results are 17.33, 32.08, 24.34, and 3.13, respectively.
For graph size 100, GA has minimum 71.24, maximum 101.09,
average 86.42 and standard deviation of 5.95. GAWES on graph
size 100 has minimum 36.41, maximum 46.31, average 40.72 and

standard deviation of 1.56. As seen in Fig. 9(a), the results of GA
and GAWES for graphs 25 and 50 are close to each other, but for
graphs with size 100 and larger GAWES clearly outperforms GA for
fitness function F4/XF,. Examining fitness function Fg/XFs results
in Fig. 9(b), for graph size 25, minimum, maximum, average, and
standard deviation of GA are 2.30, 2.80, 2.51, and 0.09, respectively.
Again for graphs size 25, the GAWES results are 2.34, 2.98, 2.66,
and 0.12, respectively. As seen in Fig. 9(b), the results of GA and
GAWES for graph size 25 are close to each other, however, for
graphs with size 50 and larger GAWES clearly outperforms GA for
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Table 7
Results of GAWES and GA on graphs in Dataset_C. Time values are given in seconds.
Graph acronym A B C D E F G H
Graph size 100 100 100 100 100 100 100 100
Calib. error dist. | exp. exp. exp. exp. normal | normal | normal normal
Node degree dist. | exp. exp. normal | normal exp. exp. normal normal
Edge weight dist. | exp. normal | exp. normal exp normal | exp. normal
MIN_COST 156 313 179 334 173 318 147 310
MIN_ERROR 12 11 11 13 11 11 9 11
CPU TIME 200s 200s 200s 200s 200s 200s 200s 200s
Cost 261 430 299 472 285 450 259 432
Error 27 28 29 22 ’ 23 20 26 ’ 26
Fa Avg Fy 116.98 | 91.51 141.62 | 80.41 ' 114.26 | 74.14 148.98 ’ 86.87
Std Fa 1045 | 6.99 11.34 | 6.05 10.67 | 4.72 11.80  6.27
GA Cost 570 613 565 574 492 572 499 635
Error 12 16 16 18 14 14 12 13
Fr Avg Fp 2.68 4.84 4.23 4.84 3.05 3.81 3.73 4.54
Std Fg 0.20 0.22 0.19 0.19 0.19 0.18 0.23 0.21
Cost 185 425 239 443 228 407 201 407
Error 17 19 19 28 ' 14 17 15 ' 19
XFa Avg XFy | 1055 | 50.59 | 30.08 | 71.47  21.40 | 33.61 30.14  42.50
, Std XFs | 0.44 1.88 3.07 5.75. 0.36 3.40 2.66 2.38
GAWES Cost 222 508 356 514 301 446 257 446
Error 12 11 12 13 11 11 9 11
XFp Avg XFp | 0.38 1.95 1.33 1.96 0.71 1.37 0.65 1.44
Std XFp | 0.02 0.05 0.03 0.04 0.03 0.04 0.04 0.03
Cost 193 421 238 449 231 410 196 406
Error 16 18 19 27 14 14 15 18
XFa Avg XF4 | 10.64 49.03 27.15 71.20 21.43 35.58 28.84 42.19
) Std XF4 | 0.05 2.72 1.54 6.91 0.17 4.05 3.22 2.64
GAWES* Cost 222 506 355 514 298 455 256 445
Error 12 11 12 13 11 11 9 11
XFp Avg XFp | 0.36 1.91 1.31 1.95 0.70 1.40 0.64 1.43
Std XFp | 002 | 005 |003 |004 003 |00 |004 003

fitness function Fg/XFg. As a summary it can be concluded that
even though both algorithms are executed for the same amount
of time, GAWES outperforms GA on all graphs in Dataset_A except
the smallest two.

The best, average, and standard deviation results for Dataset_B
are reported in Table 6. Experiment is conducted on graphs with
sizes varying from 100 to 500. Node degree, edge weight, and
calibration error distributions of all the graphs are uniform dis-
tributions. Fig. 10 plots the minimum, the maximum, the average
values and the standard deviations for both fitness functions. The
vertical lines mark the minimum and the maximum values and the
boxes display the average values along with the standard devia-
tions. As seen from Table 6 and Fig. 10, even though both GAWES
and GA are given the exact same runtime, GAWES outperforms
GA on all instances and for both fitness functions. Observing the
average results in Table 6, the ratio of the average fitness results
F4/XF, increases from 1.87 on graph with size 100 to 7.70 on graph
with size 500. For Fg/XFg, the ratio increases from 2.48 to 3.06 for
the same graphs. Based on these numbers, it is safe to conclude
that even though GAWES is superior to GA on all graphs, the gap
between the results increases even more with the graph size.
Comparing GAWES and GAWES* based on the results in Table 6, it is
observed that GAWES* is equal or superior to GAWES on all graphs
in Dataset_B.

The experimentation results on Dataset_C are presented in Ta-
ble 7 and Fig. 11. As denoted in Table 7, Dataset_C has graphs with
all possible combinations of normal and exponential distributions
for node degree, edge weight, and calibration error. Table 7 reports
the input parameters of each dataset configuration along with the
best, average and standard deviation results of the simulations
on the datasets for each algorithm. Fig. 11 plots the minimum,
the maximum, the average values and the standard deviations for
both fitness functions. The vertical lines mark the minimum and
the maximum values and the boxes display the average values
along with the standard deviations. A thorough examination of
the results reveals that in this dataset, except for graph D with
fitness function F4 /XF4, GAWES is superior to GA on all graphs and
for both fitness functions. Comparing GAWES with GAWES* for
average values of fitness function XF,, GAWES™ is superior on all
graphs except A, E and F, and for fitness function XFg again GAWES*
is superior on all graphs except F.

Closely examining Table 7 for the results of the fitness function
XFp reveals that XF obtained the MIN_ERROR on 7 out of 8 graphs
in the dataset. Therefore, use of XF as a fitness function suits the
applications for which minimizing the post-calibration skew is the
primary objective and hence more important than minimizing the
total cost.

When comparing fitness functions XF, and XFg, it is clear that
XF,4 balances total calibration cost and post-calibration skew while
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XFg minimizes post-calibration skew in exchange of higher total
calibration costs. Therefore, the use of the best fitness function
depends on the application at hand. GAWES is designed generic
enough so that the algorithm can work with any fitness function
generated based on total cost and post-calibration skew.

As a conclusion to the experimentation, the main definitive
feature of GAWES compared to GA is the mechanism to generate
and use extreme efficient solutions within the genetic algorithm.
Therefore, the superiority of the results of GAWES over GA can be
safely attributed to this feature. The extreme efficient solutions
method depends on generating new chromosomes from existing
chromosomes. These newly generated chromosomes, if exist, are
extreme efficient solutions themselves, therefore guide the search
towards the ideal point where both the cost and the error are
minimized. Using a mechanism like this in the genetic algorithm
improves the quality of the population and as a result generates
superior solutions. One second benefit of using extreme efficient
solutions is that it gives the genetic algorithm a new way of creat-
ing chromosomes in addition to regular crossover. [22] reports that
random spanning tree creation for encoding new chromosomes
can have bias problems towards a star like or a path like topology
depending on the method used. Both GA and GAWES use Edge-
Set chromosome encoding with KruskalRST as the algorithm to
generate random chromosomes and to fix infeasible chromosomes.
Therefore, as [22] reports, use of a single algorithm to create and fix
chromosomes tends to create a bias in the population towards a
certain type of tree topology. However, extreme efficient solutions
use a completely different method to create new child chromo-
somes, therefore enriches the population by adding variety. As a
summary, the use of extreme efficient solutions improves the qual-
ity based on these two benefits; by creating new extreme efficient
solutions as child chromosomes, and by adding a new method
alternative to crossover for generating new child chromosomes.

7. Conclusion

In this paper, a novel genetic algorithm based solution (GAWES)
to the optimization version of the MBCT problem is proposed. The
main novelty of GAWES is the use of extreme efficient solutions
within the genetic algorithm. Experimental evaluation results on
three different datasets confirm that GAWES algorithm is superior
to the existing state of the art genetic algorithm both in energy
efficiency and calibration accuracy. As a future work, GAWES al-
gorithm will be applied to other bicriteria spanning tree problems.
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