
Applied Soft Computing Journal 73 (2018) 83–95

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

A genetic algorithm based solution to the Minimum-Cost
Bounded-Error Calibration Tree problem
Hüseyin Akcan
Department of Software Engineering, Izmir University of Economics, Izmir, Turkey

h i g h l i g h t s

• The MBCT problem is a spanning tree problem with two objectives.
• MBCT minimizes the spanning tree cost and bounds the maximum post-calibration skew.
• GAWES is proposed as a novel genetic algorithm based solution to the MBCT problem.
• Main novelty of GAWES is using extreme efficient solutions in the genetic algorithm.
• Experiments confirm that GAWES is superior to the state of the art.

a r t i c l e i n f o

Article history:
Received 11 October 2017
Received in revised form 20 June 2018
Accepted 9 August 2018
Available online xxxx

Keywords:
Genetic algorithm
Wireless sensor networks
Energy efficiency
Calibration tree

a b s t r a c t

Sensors in wireless sensor networks are required to be self-calibrated periodically during their prolonged
deployment periods. In calibration planning, employing intelligent algorithms are essential to optimize
both the efficiency and the accuracy of calibration. The Minimum-Cost Bounded-Error Calibration Tree
(MBCT) problem is a spanning tree problem with two objectives, minimizing the spanning tree cost and
bounding the maximum post-calibration skew. The decision version of theMBCT problem is proven to be
NP-Complete. In this paper, theGAWES algorithm is presented as a novel genetic algorithm based solution
to the optimization version of the MBCT problem. GAWES adopts extreme efficient solution generation
within the genetic algorithm to improve the search quality. It is demonstrated through experimentation
that GAWES is superior to the existing state of the art algorithm, both in energy efficiency and calibration
accuracy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Technological advances in Micro-Electro-Mechanical Systems
(MEMS) have brought the network of self-configurable widely
deployed sensor nodes, as wireless sensor networks, in our daily
lives. Equipped with low power radios, nodes in wireless sensor
networks are able to perform various sensing tasks and facilitate
an ad hoc network to aggregate and extract useful data from the
deployed environment. As a consequence of their flexible design
and wireless operability, wireless sensor networks are capable of
performing tasks that are not suitable or affordable for humans,
such as remote area monitoring [1], underwater monitoring [2],
and deployments in hazardous environments [3,4]. To tackle these
deployment constraints, wireless sensor networks are designed to
operate in a self-configurablemannerwheremanual configuration
is not a viable option. As each individual sensor unit operates on

E-mail address: huseyin.akcan@ieu.edu.tr.

low power battery, energy efficiency is the most essential con-
straint for all the algorithms that need to be developed for sensor
networks. The total lifetime of the sensor network depends on the
lifetime of each individual sensor node in the network. Therefore,
algorithms deployed on wireless sensor networks should not only
use less power, but also be well distributed to avoid energy deple-
tion on a single node.

Periodic calibration of each individual sensor is a critical prob-
lem in wireless sensor networks. As manual calibration is not an
option after deployment, these sensors should self-calibrate them-
selves using nearby sensors as references. However, sensors need
to communicate during calibration and wireless communication is
one of the most energy consuming tasks for a sensor node. There-
fore, an efficient and accurate self-calibration algorithm is essential
for sensors that are deployed in remote areas for extended periods
of time.

Calibration in wireless sensor networks poses many challenges
[5–9]. A list of these challenges includes the inability to phys-
ically access sensors in most scenarios, their massive number,

https://doi.org/10.1016/j.asoc.2018.08.013
1568-4946/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2018.08.013
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.08.013&domain=pdf
mailto:huseyin.akcan@ieu.edu.tr
https://doi.org/10.1016/j.asoc.2018.08.013

84 H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95

and their energy constraints. To overcome these difficulties, re-
searchers have proposedmethods to calibrate sensors without any
human intervention using peer based iterative calibration [10–
14]. However, iterative calibration algorithms also introduce a new
set of challenges to the sensor network community. One such
major challenge is to calibrate the network to achieve minimum
calibration error using minimum energy in exchange.

Minimum-Cost Bounded-Error Calibration Tree (MBCT) prob-
lem [15] is based on iterative calibration of nodes inwireless sensor
networks. In these networks, energy usage is a tight constraint.
Therefore, calibrating the sensor network by using the minimum
communication cost and yet get a reasonable accuracy on the
calibration is a critical problem.However,MBCT problem is generic
enough to be applied to other domains. In its abstract form, the
problem optimizes the cost of the spanning tree, as well as the cost
of reaching from each vertex to the root of the tree, where each
vertex has an associated cost value.

Themain contribution of this paper is a novel genetic algorithm
based solution to the optimization version of the MBCT problem.
In this work, a method to find the extreme efficient solutions after
the crossover stage of the proposed genetic algorithm is employed.
Consequently, the search is more efficiently directed to the ideal
point that minimizes both the energy usage and the calibration er-
ror. As a result, through experimentation, this paper demonstrates
that the proposed algorithm outperforms the existing state of the
art in terms of both energy efficiency and calibration accuracy.

The rest of the paper is organized as follows, related work is
presented in Section 2. In Section 3MBCT problemdefinition is pre-
sented. Section 4 outlines extreme efficient solution calculation. In
Section 5 the proposed genetic algorithm based solution is given,
and experimental results are presented in Section 6. Finally Section
7 concludes the paper.

2. Related works

Calibration in sensor networks is an essential task and each
sensor needs to be calibrated periodically [6,8]. Results of real
world tests for calibration are reported in [7,9]. As sensors are
expected to operate prolonged amounts of time after deployment,
efficient periodic calibration is a critical task for the lifetime of
the network. The challenges with respect to periodic calibration
in wireless sensor networks are reported in [5].

Researchers have proposed parametric calibration methods
[10–14] as an alternative to traditional calibration methods. In
parametric calibration, a calibration function is used to map the
reported output values of the reference sensor to the input values
of the current sensor. Therefore, each sensor can self-calibrate
parametrically based on a presumed reference sensor nearby,
without any physical interaction.

There are various representations in the literature for encoding
spanning trees in evolutionary algorithms. These methods can
be listed as Characteristic Vectors [16], Predecessor Coding [17],
Prüfer Numbers [18], Blob Code [19], Link-and-Node Biasing [17],
Network Random Keys [20,21], and Edge-Sets [22]. A compara-
tive analysis of these methods are presented in [22] on various
criteria including locality, heritability, feasibility, and time-and-
space complexity. It is reported in [22] that Edge-Sets is superior
to the rest of the methods listed. [22] also discusses three different
methods in order to create random spanning trees for initializ-
ing the population and performing the crossover. The methods
are listed as PrimRST, KruskalRST, and RandomWalkRST. PrimRST
uses a modified version of Prim’s spanning tree algorithm and
is biased towards creating star topologies. RandomWalkRST uses
a random walk based strategy and is biased to create path like
topologies. KruskalRST uses a modified version of Kruskal’s span-
ning tree algorithm and creates trees that are in between star and

path like topologies. The GAWES algorithm proposed in this pa-
per uses Edge-Sets representation as chromosome encoding, and
KruskalRST method to populate the initial population and perform
crossover.

The first definition and complexity result of MBCT problem
appeared in [15]. A genetic algorithm based heuristic algorithm
(GA) is also proposed in [15] to solve the optimization version
of the MBCT problem. The efficiency of GA is evaluated using
various fitness functions on a set of randomly generated graphs.
GA uses Edge-Sets representation for chromosome encoding and
a modified version of Kruskal minimum spanning tree algorithm
(KruskalRST) is used to create random chromosomes and perform
crossover. The suggested parameters for GA algorithm is reported
in [15] as an iteration size of 50 000,mutation rate of 0.1, and initial
population size of 400.

MBCT problem seeks an efficient answer to the bicriteria span-
ning tree problem, where one needs to minimize both edge cost
and maximum post-calibration skew of the spanning tree. In this
sense, MBCT has similarities to hop constrained [23] and rooted
distance constrained [24] spanning tree problems. In hop con-
strained spanning tree problem, the objective is to minimize the
spanning tree cost given that the hop distance of each node to
the root is less than some predefined constant. Similarly, in rooted
distance constrained spanning tree problem, the objective is to find
the minimum cost spanning tree given that delay of each node,
associated with each edge, is less than a predefined distance value.
In both hop constrained and rooted distance constrained spanning
tree problems, both of the costs that needs to be minimized are on
the edges. In MBCT , having the second cost on the vertex changes
the definition and the characteristic of the problem. Therefore,
MBCT problem clearly distinguishes itself from existing hop con-
strained and rooted distance constrained spanning tree problems.

3. The problem definition

The Minimum-Cost Bounded-Error Calibration Tree problem
was first defined in [15]. Formal definition of the MBCT problem
was stated in [15] as:

Definition 3.1 (MBCT [15]). ‘‘Given awireless sensor networkmod-
eled as an undirected graph G(V , E), and a designated reference
node r ∈ V , where each e ∈ E is assigned distance values
de > 0, and each v ∈ V is associated with a maximum random
measurement error ϵv , the MBCT problem is defined as finding a
spanning tree over G rooted at r with total edge cost not greater
than a constant C > 0, while the post-calibration skew of each
sensor v ∈ V is bounded by a positive constant k’’.

The MBCT problem was shown to be NP-complete in [15], and
a genetic algorithm based heuristic was proposed in the same
work for the optimization version of the problem. The optimization
version of the MBCT problem minimizes both the total cost value
and the post-calibration skew.

Fig. 1 (a) presents an example graph, where each node i has
an associated maximum calibration error (ϵi), and each edge j has
an associated cost cj. S0 is marked as the pre-calibrated sensor
with zero calibration error. Post-calibration skew of each node is
the sum of the absolute maximum errors of each node along the
path to node S0. For example, in Fig. 1 (b), node S2 is connected
to S0 through a path passing through node S3. Therefore, the post-
calibration skew of node S2 is then the sumof the calibration errors
of nodes S2, S3, and S0, which is equal to |ξ2| = 2 + 8 + 0 = 10.
Fig. 1 (b) shows the minimum spanning tree based on edge costs,
where the total cost is 5, post-calibration skew of each node is
given as |ξ1| = 7, |ξ2| = 10, |ξ3| = 8, |ξ4| = 9, |ξ5| = 1,
and the maximum post-calibration skew is 10. Fig. 1 (c) shows

H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95 85

Fig. 1. Example graph (a), minimum spanning tree based on edge costs (b), spanning tree based on minimummaximum post-calibration skew and edge costs (c).

the spanning tree with the minimum possible maximum post-
calibration skew and the minimum total cost, where the total cost
is 8, post-calibration skew of each node this time is given as |ξ1| =

7, |ξ2| = 4, |ξ3| = 8, |ξ4| = 2, |ξ5| = 1, and the maximum post-
calibration skew is 8. As the absolute calibration error of node S3 is
8, the maximum post-calibration skew cannot get any lower than
this value. This example clearly demonstrates that both the total
cost and the calibration accuracy can be controlled in a network by
adjusting the topology of the spanning tree.

This paper proposes a new genetic algorithm based solution
to the optimization version of MBCT problem. The novel part of
the newly proposed algorithm is the use of extreme efficient solu-
tions within the genetic algorithm. Details of the extreme efficient
solution generation are described in Section 4 and the genetic
algorithm based solution is presented in Section 5.

4. Extreme efficient solution generation

Extreme efficient solution is defined in [25] as:

Definition 4.1 (Extreme Efficient Solution [25]). ‘‘In a multiobjective
linear program,

min {Cx : Ax = b, x ≥ 0} ,

the set of extreme efficient solutions are the integer solutions of
the linear program

min

⎧⎨⎩ ∑
j=1,...,Q

λjc jx : Ax = b, x ≥ 0

⎫⎬⎭ ,

where,
∑Q

j=1 λj = 1, λj > 0, j = 1, . . . , n’’.

[26,27] present methods to create new extreme efficient solu-
tions using existing extreme efficient solutions on multi-criteria
spanning tree problems. The SearchXP algorithm proposed in this
paper adapts the extreme efficient solution generation methods
in [26,27] to the MBCT problem. Given two existing extreme ef-
ficient solutions S1(x1, y1) and S2(x2, y2), a new extreme efficient
solution is the furthest away point to the line passing over S1 and
S2, which is a minimum spanning tree of the graph assigned the
costs for each edge e as f (e) =f 1(e)(Sy1 − Sy2) + f 2(e)(Sx2 − Sx1). For
an edge e, f 1(e) represents the cost of edge e, Sy1 and Sy2 represent
the value of the second criteria of the extreme efficient solutions
S1 and S2. Again f 2(e) represents the error of the outgoing vertex
on edge e and Sx1 and Sx2 represent the value of the first criteria of
the extreme efficient solutions S1 and S2. The pseudocode of the
SearchXP algorithm is presented in Fig. 2. In SearchXP algorithm, a
queue of extreme efficient solution pairs is created and initiated
with the given solutions S1 and S2. As long as the queue is not
empty, the algorithm iteratively selects a new pair from the queue.
The formula in line 6 is used to modify the costs and assign these
new edge costs to the graph to create a single criteria graph. In line
7, a modified version of Prim’s minimum spanning tree algorithm

is used to solve the single criteria problem resulting a new extreme
efficient solution S with an accompanying spanning tree. If S is not
equal to Sa and Sb, and new solution pairs {Sa, S} and {S, Sb} have not
been seen before, these extreme efficient solution pairs are added
to the queue. Upon completion, the SearchXP algorithm returns a
list of all the extreme efficient solutions evaluated along with their
accompanying spanning trees.

The proposed genetic algorithm uses the SearchXP extreme
efficient solution generation algorithm after the crossover stage.
The crossover candidates are treated as extreme efficient solutions
to generate new extreme efficient solutions, thus new chromo-
somes. Newly generated extreme efficient solutions span the area
between the two best crossover candidate solutions, hence, guide
the search to the ideal point at which both criteria are minimized.

5. Heuristic solution

In this section, details of the proposed genetic algorithm based
solution to theMBCT problem is described,which is namedGenetic
AlgorithmWith Extreme Solutions (GAWES) throughout the paper.
In the optimization version of the MBCT problem, the objective
is to minimize both the total edge cost and the post-calibration
skew of the final spanning tree. Therefore, optimization version
of the problem has two criteria. The main novelty of GAWES is in
combining the existing extreme efficient solutions to create new
extreme efficient solution after the crossover stage of the genetic
algorithm. GAWES algorithm’s search capacity is greatly enhanced
by generating multiple extreme efficient solutions from the best
chromosomes. As a result, superior solutions compared to the state
of the art [15] are achieved. Details of the GAWES algorithm are
described below in six stages, chromosomeencoding, chromosome
generation, initiating a population, crossover, calculating extreme
efficient solutions, and mutation.

5.1. Chromosome encoding

Each chromosome in GAWES represents a valid spanning tree
solution to the problem. Therefore, chromosomes are encoded
using the Edge-Sets [22] representation as a list of edges given as
vertex pairs of the input graph. Since a spanning tree on a graph of
|V | vertices has |V − 1| edges, each chromosome in GAWES has a
fixed size of |V − 1|.

5.2. Chromosome generation

During the crossover and mutation phases, altered chromo-
somes might not represent a valid spanning tree. Therefore, the
chromosome generation function is used in these stages to recre-
ate a valid spanning tree from the given altered chromosome.
In the chromosome generation phase, a modified version of the
Kruskal minimum spanning tree algorithm (KruskalRST [22]) is
used. Contrary to the Kruskal algorithm, the non cycle creating
edges within the chromosome is kept, and the rest of the edges are
randomly added to the chromosome without any ordering until a
valid spanning tree is generated.

86 H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95

Fig. 2. The pseudocode of the SearchXP algorithm.

5.3. Initiating a population

The population is initiated with random chromosomes by gen-
erating random spanning trees and encoding them as chromo-
somes. The population size is controlled by a parameter within the
GAWES algorithm.

5.4. Crossover

In the crossover stage, candidates are selected using Roulette
Wheel Selection algorithm [28]. From the candidate parent chro-
mosomes, a new child chromosome is created. The newly created
child chromosome is inserted into the population, and the chromo-
somewith the worst fitness value is removed from the population.
In the crossover stage, the child gets each of its genes from one of
the parents with equal probability. Therefore, as a result, a random
chromosome is created from the best fitting parents. However, the
crossover stage described does not guarantee that the resulting
child chromosomebe a valid spanning tree, therefore an acceptable
solution to the MBCT problem. In order to fix the chromosome,
the chromosome generation process described in Section 5.2 is
applied, which converts the child chromosome to a spanning tree
solution.

5.5. Calculating extreme efficient solutions

The main novelty in GAWES, compared to the existing state
of the art genetic algorithm (GA) [15], is the use of extreme ef-
ficient solutions. In GAWES, after the crossover stage the two
parent chromosomes are treated as extreme efficient solutions.
New extreme efficient solutions are created from these two parent
solutions using the SearchXP algorithm described before in Section
4. The newly generated solutions then are added to the population.
Therefore, at each iteration new extreme efficient solutions en-
coded as chromosomes are added to the population. The addition
of these efficient solutions enhances the borders of the search
towards the ideal point, depicted as the minimum of both criteria.

5.6. Mutation

In the mutation phase, with a given low probability, a random
edge is removed from the solution chromosome. Again, to fix the

Fig. 3. The pseudocode of the PopulateSolutions function.

Table 1
Distributions of the parameters used in the datasets.

Dataset_A Dataset_B Dataset_C

Graph size 25–1000 100–500 100
Node degree dist. normal uniform normal or exponential
Edge weight dist. normal uniform normal or exponential
Calib. error dist. uniform uniform normal or exponential

chromosome, the chromosome generation function defined in Sec-
tion 5.2 is used. The mutation rate is controlled with a parameter
in the GAWES algorithm.

The pseudocode of the PopulateSolutions function and the
GAWES algorithms are presented in Figs. 3 and 4, respectively. The
PopulateSolutions function generates new extreme efficient solu-
tions from the two given solutions and adds these new solutions
to the population. PopulateSolutions function is called in lines 7 and
13 in GAWES. In line 7, extreme efficient solutions generated from
the two solutions that optimize the first and the second criteria are
added to the population. In line 13, two solutions depicted by the
two parent chromosomes during the crossover phase are used to
create new solutions.

In lines 2–4 of theGAWES algorithm, the population is randomly
created. In lines 5–7, new solutions are generated from the exist-
ing two extreme efficient solutions and added to the population.
GAWES algorithm runs for a fixed number of iterations defined
as a parameter. In line 10, Roulette Wheel Selection algorithm is
used to select two parent chromosomes. Crossover is performed in
line 12, and new extreme efficient solutions are created in line 13.
Mutation is called, if necessary, in lines 14–15, and chromosome

H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95 87

Fig. 4. The pseudocode of the GAWES algorithm.

generation routine is called to create a valid spanning tree from
the new chromosome in line 17. Best fitness score is updated in
line 18, new chromosome is inserted into the population in line
19, and the worst chromosome found in line 11 is removed from
the population in line 20.

6. Experimental results

In this section, results of the simulations conducted to compare
the performance of GAWES with the state of the art genetic algo-
rithm (GA) [15] are presented. Both algorithms solve the optimiza-
tion version of theMBCT problem and the objective is to minimize
both the total cost and the post-calibration skew of the spanning
tree. The experimental results clearly demonstrate that GAWES is
superior to GA, especially in larger graphs.

The organization of the experimental results section can be out-
lined as follows. In Section 6.1, properties of the datasets and the
fitness functions used in the experiments are described. Parameter
tuning for GAWES is discussed in Section 6.2, and the results of the
simulations comparingGAWES andGA are presented in Section 6.3.

6.1. Datasets and fitness functions

The experiments are conducted on three different datasetswith
various node degree, edge weight, and calibration error distribu-
tions. Eachdataset includesmultiple graph instanceswith different
sizes. The names and the parameters of the graphs used in the
experiments are presented in Table 1. During the construction of

the graph instances, only positive integers are used as node degree,
edge weight, and calibration error values.

Dataset_A is the dataset used in [15]. The graph sizes in
Dataset_A range from 25 to 1000. Node degree distribution is
selected as normal distribution with an average of 5 nodes and
a standard deviation of 2 nodes. Edge weight distribution is also
selected as normal distributionwith an average of 10 and standard
deviation of 5. For calibration error, uniform distribution is used
with a minimum value of 1 and maximum value of 10. To further
evaluate the performance of GAWES and GA, in addition to the
existing dataset, two new datasets with various configurations
are created in this paper. The parameters of the new Dataset_B
and Dataset_C are also presented in Table 1. In Dataset_B, graphs
with sizes varying from 100 to 500 are created. The node degree
distribution in this dataset is set as uniform with minimum 4 and
maximum 8 nodes. Edgeweight distribution is selected as uniform
also with values between 1 and 10. A uniform distribution is used
for calibration error of nodes having values of minimum 1 and
maximum 10. In Dataset_C, graphs with 100 nodes are created
with two different random distributions for edge weight, node
degree, and calibration error. Node degree distribution is selected
as normal or exponential. In normal distribution the average value
is selected as 8 and the standard deviation is 4. In exponential
distribution λ is selected as 1 and the result is scaled with a
scalar value 8. Edge weight distribution is selected as normal or
exponential. In normal distribution the average value is selected
as 8 and the standard deviation as 4. In exponential distribution
λ is selected as 1 and the result is scaled with a scalar value of 8.

88 H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95

Fig. 5. y-axis displays the fitness value of the corresponding fitness functions XFA (a), and XFB (b) for various number of iterations of GAWES.

Table 2
Parameters and formulas of fitness functions used.
Parameter name Explanation

MIN_COST Minimum spanning tree cost

MAX_COST Maximum spanning tree cost

MIN_ERROR Minimum post-calibration skew

MAX_ERROR Maximum post-calibration skew

norm_cost (cost−MIN_COST)×100
(MAX_COST−MIN_COST)

norm_error (error−MIN_ERROR)×100
(MAX_ERROR−MIN_ERROR)

Fitness function name Fitness Function Formula

FA, XFA (cost−MIN_COST)2
MIN_COST +

(error−MIN_ERROR)2
MIN_ERROR

FB, XFB 0.1 × norm_cost + 0.9 × norm_error

Calibration error distribution is selected as normal or exponential.
In normal distribution the average value is selected as 0 and the
standard deviation is selected as 3. In exponential distribution λ is
selected as 1 and the result is scaled with a scalar value of 10.

For each graph, MIN_COST represents the minimum spanning
tree cost of the graph based on edge costs only and MIN_ERROR
represents the minimum error tree cost of the graph based on
post-calibration skew values only. Therefore, for each graph, the
ideal solution to achieve is to find a spanning treewith {MIN_COST ,
MIN_ERROR} parameters. Again, MAX_COST and MAX_ERROR rep-
resent theupperbounds for the total cost andpost-calibration skew
for each graph. In order to perform a fair comparison among the
algorithms, these parameters are used to calculate two different
fitness functions for each algorithm, inline with the ones used
in [15]. The fitness functions and the parameters used in these
fitness functions are presented in Table 2.

6.2. Parameter tuning for GAWES

In this section, experiments are conducted to find the best initial
population size and mutation probability parameters for GAWES.
All the experiments are conducted on Dataset_A. The graphs used
in the experiments have sizes 250, 500, 750, and 1000. Each pa-
rameter tuning experiment is conducted 10 times and the average
results are reported. In the first experiment, GAWES algorithm is
tested with various iterations to find the best iteration count. The
results of the experimentation on all four graphs for the fitness
functionsXFA andXFB are presented in Fig. 5. In this experiment, the
initial population size is set to 200, mutation probability is set to
0.05, and the change of fitness values with iteration counts varying
from 5000 to 100 000 is reported. Fig. 5 clearly demonstrates
that the fitness value decreases with increasing iteration counts.
Consequently, increasing the iteration count increases the runtime
of the algorithm.

In the next experiment, GAWES is tested with various initial
population sizes ranging from 200 to 5000. The iteration count for
this experiment is selected as 100 000, and the mutation probabil-
ity is selected as 0.3. It can be observed from Fig. 6 that the fitness
values increase for population sizes larger than 400.

Fig. 7 shows the effect of using various mutation probabilities
on the fitness value of the GAWES algorithm. In this experiment,
the iteration count is selected as 40 000 and the initial population
size is selected as 1000. As seen from the figure, increasing the
mutation probability slightly increases the fitness value, therefore
is not preferred.

Initial experiments on parameter tuning suggest a population
size of 400 and mutation probability of 0.1, along with an iteration
count between 50 000 and 100 000. In order to identify the best
combination of values a new experiment is conducted. In this new
experiment all combinations of four different mutation rate values
(0.001, 0.005, 0.05, 0.1), three different iteration counts (20 000,
50 000, 100 000), and three different population size values (200,
400, 800) are tested on four different graphs. All experiments are
conducted 100 times and the average values and the standard
deviations are reported in Table 3. The best average values for each
fitness function on each graph is reported as bold. Based on the
results, parameter set of mutation rate 0.001, iteration count of
100 000, population size of 400 has the best results on 7 out of 8
fitness functions. Examining mutation rates, the results of 0.001
and0.005 are close to each other,while 0.001hasmore best results.
In all experiments with iteration count 100 000, population size of
400 gives better results than 200 and 800.

6.3. Comparing GAWES with GA

We are now ready to give the performance comparison re-
sults of GAWES and GA over the three existing datasets. Fitness
functions, input graphs, iteration counts (or CPU runtimes), initial
population sizes and, mutation probabilities are given as input
parameters for both genetic algorithms. The details of these pa-
rameters are described in Table 4. In the performance comparisons,
two different parameter sets are used for GAWES. The first set,
depicted as GAWES, uses the optimal parameters of GA as reported
in [15]with initial population size selected as 400 and themutation
probability is set to 0.1. The second set, depicted as GAWES∗, uses
the best parameters selected in the parameter tuning experiments
in Section 6.2 with initial population size selected as 400 and the
mutation probability selected as 0.001. On each iteration, GAWES
investigates extreme efficient solutions and uses more CPU time
than GA. Therefore, to be fair in comparison, experimentation for
both algorithms are done for a fixed amount of time for each
graph type and the results are reported. For this reason, in each
experiment, the experimentation times are the same for both al-
gorithms, however, number of iterations vary. Each experiment is
conducted 100 times and theminimum,maximum, average results

H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95 89

Fig. 6. y-axis displays the fitness value of the corresponding fitness functions XFA (a), and XFB (b) for various population sizes of GAWES.

Fig. 7. y-axis displays the fitness value of the corresponding fitness functions XFA (a), and XFB (b) for various mutation probabilities of GAWES.

Table 3
Results of parameter tuning experiments for GAWES.
Mut Iter Pop 250 500 750 1000

XFA XF B XFA XF B XFA XF B XFA XF B

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

0.001 20000 200 85.96 4.14 2.06 0.03 211.10 5.60 2.12 0.03 306.02 8.39 2.04 0.03 492.08 18.36 2.11 0.05
0.001 20000 400 103.63 4.74 2.16 0.04 226.53 5.88 2.22 0.02 316.64 6.69 2.10 0.02 522.38 13.80 2.22 0.04
0.001 20000 800 117.25 0.00 2.68 0.07 276.92 0.24 2.47 0.02 409.68 3.89 2.33 0.02 660.34 9.91 2.44 0.02
0.001 50000 200 79.05 4.59 2.02 0.04 206.49 5.04 2.09 0.03 303.71 9.14 2.02 0.03 481.65 20.58 2.07 0.04
0.001 50000 400 83.00 3.91 2.02 0.03 204.92 5.20 2.11 0.02 293.20 6.83 2.03 0.02 467.53 13.88 2.08 0.03
0.001 50000 800 114.98 3.16 2.24 0.05 243.97 7.62 2.26 0.02 325.92 7.08 2.13 0.02 547.16 21.47 2.22 0.04
0.001 100000 200 74.13 4.06 2.00 0.04 206.43 4.86 2.09 0.03 303.30 9.67 2.02 0.03 477.43 22.51 2.07 0.06
0.001 100000 400 73.87 3.25 1.97 0.03 199.53 4.32 2.08 0.02 287.67 8.00 2.01 0.02 451.88 14.49 2.04 0.03
0.001 100000 800 95.23 6.12 2.08 0.04 219.71 5.86 2.14 0.02 285.60 7.75 2.03 0.02 475.15 18.28 2.08 0.04
0.005 20000 200 85.98 4.12 2.06 0.03 210.63 5.24 2.11 0.03 307.90 8.94 2.04 0.03 491.53 17.18 2.11 0.05
0.005 20000 400 104.39 4.20 2.17 0.04 225.78 5.36 2.21 0.02 317.98 6.89 2.11 0.02 522.34 13.24 2.22 0.04
0.005 20000 800 117.25 0.00 2.70 0.07 276.87 0.41 2.48 0.03 408.57 5.14 2.33 0.02 661.66 9.99 2.44 0.02
0.005 50000 200 78.15 3.95 2.02 0.04 207.27 4.85 2.09 0.03 303.78 9.03 2.02 0.03 483.68 18.65 2.08 0.06
0.005 50000 400 83.49 3.66 2.03 0.03 205.35 5.54 2.11 0.02 293.54 6.45 2.02 0.02 466.75 14.61 2.08 0.03
0.005 50000 800 114.84 3.30 2.23 0.04 242.84 7.51 2.26 0.02 327.38 6.55 2.13 0.02 550.89 18.97 2.22 0.03
0.005 100000 200 75.24 4.23 2.00 0.04 206.36 4.93 2.08 0.03 302.81 9.92 2.03 0.03 476.87 20.64 2.08 0.06
0.005 100000 400 73.89 3.53 1.97 0.04 199.81 4.34 2.08 0.02 289.87 8.36 2.01 0.02 452.41 13.29 2.04 0.03
0.005 100000 800 96.16 6.27 2.08 0.04 220.69 6.72 2.13 0.02 284.89 6.13 2.03 0.02 472.37 18.02 2.09 0.03
0.05 20000 200 86.04 4.47 2.06 0.03 211.35 5.55 2.12 0.03 308.69 10.16 2.05 0.03 498.12 17.74 2.12 0.05
0.05 20000 400 107.05 4.39 2.19 0.04 229.79 6.01 2.24 0.02 325.92 6.79 2.12 0.02 533.19 15.22 2.25 0.03
0.05 20000 800 117.24 0.05 2.71 0.07 276.91 0.31 2.49 0.03 409.60 4.50 2.34 0.02 664.29 7.83 2.45 0.02
0.05 50000 200 79.31 4.36 2.02 0.03 207.30 4.46 2.09 0.04 303.59 9.04 2.03 0.03 481.55 16.64 2.08 0.05
0.05 50000 400 85.68 3.98 2.04 0.03 207.35 5.46 2.12 0.02 296.82 7.88 2.03 0.02 472.65 14.19 2.09 0.03
0.05 50000 800 116.81 1.33 2.27 0.04 248.79 6.92 2.28 0.02 337.01 7.37 2.15 0.02 556.14 17.45 2.25 0.03
0.05 100000 200 76.29 3.92 2.00 0.03 204.14 4.74 2.09 0.03 302.96 9.26 2.03 0.03 475.03 16.15 2.07 0.05
0.05 100000 400 75.07 3.40 1.98 0.03 200.58 4.29 2.08 0.02 291.98 7.22 2.01 0.02 453.18 14.54 2.05 0.03
0.05 100000 800 99.97 5.43 2.10 0.04 223.19 6.05 2.15 0.02 290.64 6.45 2.03 0.02 481.48 17.60 2.11 0.04
0.1 20000 200 89.27 4.68 2.07 0.03 212.09 4.97 2.13 0.03 314.10 8.64 2.05 0.03 499.21 16.58 2.16 0.05
0.1 20000 400 108.70 3.70 2.21 0.04 234.50 6.16 2.25 0.02 332.02 7.30 2.14 0.02 544.94 14.83 2.27 0.04
0.1 20000 800 117.24 0.05 2.73 0.07 276.93 0.18 2.50 0.03 410.24 3.96 2.36 0.02 667.88 5.68 2.47 0.02
0.1 50000 200 81.17 3.95 2.02 0.03 206.24 4.48 2.09 0.03 306.79 9.42 2.04 0.03 485.65 17.62 2.09 0.05
0.1 50000 400 87.30 4.32 2.06 0.03 208.93 6.83 2.13 0.02 300.37 8.50 2.04 0.02 481.05 13.20 2.11 0.03
0.1 50000 800 116.86 1.18 2.30 0.04 255.12 5.85 2.29 0.02 345.61 7.21 2.17 0.02 567.60 17.11 2.29 0.03
0.1 100000 200 77.04 3.91 1.99 0.03 204.6 5.67 2.08 0.03 304.62 10.22 2.03 0.04 473.67 16.63 2.07 0.06
0.1 100000 400 76.95 3.51 2.00 0.03 201.37 4.22 2.09 0.02 292.30 7.52 2.01 0.02 461.68 13.98 2.05 0.03
0.1 100000 800 102.61 4.76 2.13 0.04 227.40 5.16 2.16 0.02 297.75 7.38 2.05 0.02 489.18 19.83 2.14 0.03

90 H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95

Table 4
Parameters of GAWES and GA.
Parameter name Description Range

Fitness function Fitness function used in the algorithms as described in Table 2 FA, FB , XFA , XFB
Runtime Fixed runtime in seconds for each algorithm (graph_size × 2) seconds
Iteration Number of iterations varies with runtime
Population size Initial population size 400
Mutation probability Genetic algorithm mutation probability 0.1(GA,GAWES), 0.001(GAWES∗)

Fig. 8. Results of the GAWES and the GA algorithms for all fitness functions on each graph in Dataset_A.

and the standard deviations are reported. Experiments are run on
a computerwith 2 GHz Intel Xeon Gold 6138 CPU and 512 GB RAM.

Fig. 8 plots the results of the experimentation on Dataset_A.
The best results of both algorithms for all fitness functions on
each graph are displayed in respective figures. In each figure, left
axis shows post-calibration skew and bottom axis shows total

calibration cost for each spanning tree result. The values of the
fitness functions FA and FB are given as the results of the GA
algorithm while the values of XFA and XFB are given as the results
of the GAWES algorithm. In the figures, a solution x is superior to
another solution y if and only if both total calibration cost value
and post-calibration skew value of x is smaller than the respective

H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95 91

Fig. 9. Results of GAWES and GA on graphs in Dataset_A. The vertical lines mark the minimum and the maximum values and the boxes display the average values along with
the standard deviations.

Table 5
Results of GAWES and GA on graphs in Dataset_A. Time values are given in seconds.

values of solution y. As seen in the figures, except the smallest
graphs (n25 and n50), GAWES results are superior compared to GA
results for fitness functions FA/XFA and FB/XFB. As the graph size
increases, the difference in the results also dramatically increase,
where GAWES performs much better than GA for both fitness
functions FA/XFA and FB/XFB. The results are presented in more
detail in Table 5, including the runtime in seconds for each run
of the algorithms, average and standard deviation for all fitness

values, and the GAWES∗ results. Comparing GAWES with GAWES∗,
it is observed that based on the average fitness values GAWES∗

is superior on the datasets with size 50, 250, 750, and 1000. A
more detailed result of the experiments including the minimum,
maximum, average values and the standard deviations are pre-
sented in Fig. 9 for both fitness functions. The vertical lines mark
the minimum and the maximum values and the boxes display the
average values along with the standard deviations. Fig. 9(a) plots

92 H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95

Fig. 10. Results of GAWES and GA on graphs in Dataset_B. The vertical lines mark the minimum and the maximum values and the boxes display the average values along
with the standard deviations.

Table 6
Results of GAWES and GA on graphs in Dataset_B. Time values are given in seconds.

the result for fitness function FA/XFA. For graph size 25, minimum,
maximum, average, and standard deviation of GA are 1.30, 2.17,
1.67, and 0.20, respectively. Again for graph size 25, the GAWES
results are 1.42, 3.61, 2.43, and 0.45, respectively. For graph size
50,minimum,maximum, average, and standard deviation ofGA are
10.21, 27.78, 22.18, and 3.14, respectively. Again for graphs size 50,
the GAWES results are 17.33, 32.08, 24.34, and 3.13, respectively.
For graph size 100, GA has minimum 71.24, maximum 101.09,
average 86.42 and standard deviation of 5.95. GAWES on graph
size 100 has minimum 36.41, maximum 46.31, average 40.72 and

standard deviation of 1.56. As seen in Fig. 9(a), the results of GA
and GAWES for graphs 25 and 50 are close to each other, but for
graphs with size 100 and larger GAWES clearly outperforms GA for
fitness function FA/XFA. Examining fitness function FB/XFB results
in Fig. 9(b), for graph size 25, minimum, maximum, average, and
standard deviation ofGA are 2.30, 2.80, 2.51, and 0.09, respectively.
Again for graphs size 25, the GAWES results are 2.34, 2.98, 2.66,
and 0.12, respectively. As seen in Fig. 9(b), the results of GA and
GAWES for graph size 25 are close to each other, however, for
graphs with size 50 and larger GAWES clearly outperforms GA for

H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95 93

Table 7
Results of GAWES and GA on graphs in Dataset_C. Time values are given in seconds.

fitness function FB/XFB. As a summary it can be concluded that
even though both algorithms are executed for the same amount
of time, GAWES outperforms GA on all graphs in Dataset_A except
the smallest two.

The best, average, and standard deviation results for Dataset_B
are reported in Table 6. Experiment is conducted on graphs with
sizes varying from 100 to 500. Node degree, edge weight, and
calibration error distributions of all the graphs are uniform dis-
tributions. Fig. 10 plots the minimum, the maximum, the average
values and the standard deviations for both fitness functions. The
vertical linesmark theminimum and themaximum values and the
boxes display the average values along with the standard devia-
tions. As seen from Table 6 and Fig. 10, even though both GAWES
and GA are given the exact same runtime, GAWES outperforms
GA on all instances and for both fitness functions. Observing the
average results in Table 6, the ratio of the average fitness results
FA/XFA increases from 1.87 on graphwith size 100 to 7.70 on graph
with size 500. For FB/XFB, the ratio increases from 2.48 to 3.06 for
the same graphs. Based on these numbers, it is safe to conclude
that even though GAWES is superior to GA on all graphs, the gap
between the results increases even more with the graph size.
ComparingGAWES andGAWES∗ based on the results in Table 6, it is
observed that GAWES∗ is equal or superior to GAWES on all graphs
in Dataset_B.

The experimentation results on Dataset_C are presented in Ta-
ble 7 and Fig. 11. As denoted in Table 7, Dataset_C has graphs with
all possible combinations of normal and exponential distributions
for node degree, edgeweight, and calibration error. Table 7 reports
the input parameters of each dataset configuration along with the
best, average and standard deviation results of the simulations
on the datasets for each algorithm. Fig. 11 plots the minimum,
the maximum, the average values and the standard deviations for
both fitness functions. The vertical lines mark the minimum and
the maximum values and the boxes display the average values
along with the standard deviations. A thorough examination of
the results reveals that in this dataset, except for graph D with
fitness function FA/XFA, GAWES is superior to GA on all graphs and
for both fitness functions. Comparing GAWES with GAWES∗ for
average values of fitness function XFA, GAWES∗ is superior on all
graphs except A, E and F , and for fitness function XFB againGAWES∗

is superior on all graphs except F .
Closely examining Table 7 for the results of the fitness function

XFB reveals that XFB obtained the MIN_ERROR on 7 out of 8 graphs
in the dataset. Therefore, use of XFB as a fitness function suits the
applications for whichminimizing the post-calibration skew is the
primary objective and hence more important than minimizing the
total cost.

When comparing fitness functions XFA and XFB, it is clear that
XFA balances total calibration cost and post-calibration skewwhile

94 H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95

Fig. 11. Results of GAWES and GA on graphs in Dataset_C. The vertical lines mark the minimum and the maximum values and the boxes display the average values along
with the standard deviations.

XFB minimizes post-calibration skew in exchange of higher total
calibration costs. Therefore, the use of the best fitness function
depends on the application at hand. GAWES is designed generic
enough so that the algorithm can work with any fitness function
generated based on total cost and post-calibration skew.

As a conclusion to the experimentation, the main definitive
feature of GAWES compared to GA is the mechanism to generate
and use extreme efficient solutions within the genetic algorithm.
Therefore, the superiority of the results of GAWES over GA can be
safely attributed to this feature. The extreme efficient solutions
method depends on generating new chromosomes from existing
chromosomes. These newly generated chromosomes, if exist, are
extreme efficient solutions themselves, therefore guide the search
towards the ideal point where both the cost and the error are
minimized. Using a mechanism like this in the genetic algorithm
improves the quality of the population and as a result generates
superior solutions. One second benefit of using extreme efficient
solutions is that it gives the genetic algorithm a new way of creat-
ing chromosomes in addition to regular crossover. [22] reports that
random spanning tree creation for encoding new chromosomes
can have bias problems towards a star like or a path like topology
depending on the method used. Both GA and GAWES use Edge-
Set chromosome encoding with KruskalRST as the algorithm to
generate randomchromosomes and to fix infeasible chromosomes.
Therefore, as [22] reports, use of a single algorithm to create and fix
chromosomes tends to create a bias in the population towards a
certain type of tree topology. However, extreme efficient solutions
use a completely different method to create new child chromo-
somes, therefore enriches the population by adding variety. As a
summary, the use of extreme efficient solutions improves the qual-
ity based on these two benefits; by creating new extreme efficient
solutions as child chromosomes, and by adding a new method
alternative to crossover for generating new child chromosomes.

7. Conclusion

In this paper, a novel genetic algorithm based solution (GAWES)
to the optimization version of the MBCT problem is proposed. The
main novelty of GAWES is the use of extreme efficient solutions
within the genetic algorithm. Experimental evaluation results on
three different datasets confirm that GAWES algorithm is superior
to the existing state of the art genetic algorithm both in energy
efficiency and calibration accuracy. As a future work, GAWES al-
gorithmwill be applied to other bicriteria spanning tree problems.

References

[1] I.-J. Su, C.-C. Tsai, W.-T. Sung, Area temperature system monitoring and
computing based on adaptive fuzzy logic in wireless sensor networks, Appl.
Soft Comput. 12 (5) (2012) 1532–1541.

[2] P. Braca, R. Goldhahn, G. Ferri, K.D. LePage, Distributed information fusion in
multistatic sensor networks for underwater surveillance, IEEE Sens. J. 16 (11)
(2016) 4003–4014.

[3] R.A. Lara-Cueva, R. Gordillo, L. Valencia, D.S. Benítez, Determining the main
csma parameters for adequate performance of wsn for real-time volcano
monitoring system applications, IEEE Sens. J. 17 (5) (2017) 1493–1502.

[4] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, M. Welsh,
Deploying a wireless sensor network on an active volcano, IEEE Internet
Comput. 10 (2) (2006) 18–25.

[5] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, S. Madden, Task: sensor
network in a box, in: EWSN, Istanbul, Turkey, 2005, pp. 133–144.

[6] K. Ni, N. Ramanathan, M.N.H. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler,
G. Pottie, M. Hansen, M. Srivastava, Sensor network data fault types, ACM
Trans. Sen. Netw. 5 (25) (2009) 1–25.

[7] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Harmon, D.
Estrin, Suelo: human-assisted sensing for exploratory soilmonitoring studies.
In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, SenSys’09, Berkeley, California, 2009, pp. 197–210.

[8] A.B. Sharma, L. Golubchik, R. Govindan, Sensor faults: detection methods and
prevalence in real-world datasets, ACM Trans. Sen. Netw. 6 (2010) 23:1–
23:39.

[9] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T.
Dawson, P. Buonadonna, D. Gay, W. Hong, A macroscope in the redwoods,
in: SenSys, San Diego, California, USA, 2005, pp. 51–63.

[10] L. Balzano, R. Nowak, Blind calibration of sensor networks, in: IPSN, pp. 79–88,
Cambridge, Massachusetts, USA, 2007.

[11] V. Bychkovskiy, S. Megerian, D. Estrin, M. Potkonjak, A collaborative approach
to in-place sensor calibration. In IPSN, pages 301–316, Palo Alto, CA, USA,
2003.

[12] M. Takruri, S. Challa, R. Chakravorty, Recursive bayesian approaches for auto
calibration in drift aware wireless sensor networks, J. Netw. 5 (2010) 823–
832.

[13] C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, A. Grue, Simultaneous localization,
calibration, and tracking in an ad hoc sensor network, in: IPSN, Nashville,
Tennessee, USA, 2006, pp. 27–33.

[14] K. Whitehouse, D. Culler, Calibration as parameter estimation in sensor net-
works, in: WSNA, Atlanta, Georgia, USA, 2002, pp. 59–67.

[15] H. Akcan, On the complexity of energy efficient pairwise calibration in em-
bedded sensors, Appl. Soft Comput. 13 (4) (2013) 1766–1773.

[16] P. Piggott, F. Suraweera, Encoding graphs for genetic algorithms: An investiga-
tion using the minimum spanning tree problem, in: Progress in Evolutionary
Computation, Berlin, Heidelberg, 1995, pp. 305–314.

[17] C.C. Palmer, A. Kershenbaum, Representing trees in genetic algorithms, in:
Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, Orlando, Florida, USA, 1994,
pp. 379–384.

[18] H. Prüfer, Neuer beweis eines satzes über permutationen, Arch. Math. Phys.
27 (1918) 742–744.

[19] B.C. Julstrom, The blob code: A better string coding of spanning trees for
evolutionary search, in: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO) Workshop Program, San Mateo, California, 2001,
pp. 256–261.

[20] J.C. Bean, Genetic algorithms and random keys for sequencing and optimiza-
tion, ORSA J. Comput. 6 (2) (1994) 154–160.

[21] F. Rothlauf, D.E. Goldberg, A. Heinzl, Bad codings and the utility of well-
designed genetic algorithms, in: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO, Las Vegas, Nevada, USA, 2000, pp. 355–364.

[22] G.R. Raidl, B.A. Julstrom, Edge sets: an effective evolutionary coding of span-
ning trees, IEEE Trans. Evol. Comput. 7 (3) (2003) 225–239.

[23] L. Gouveia, L. Simonetti, E. Uchoa, Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as steiner tree problems over
layered graphs, Math. Program. 128 (1–2) (2011) 123–148.

http://refhub.elsevier.com/S1568-4946(18)30461-7/b1
http://refhub.elsevier.com/S1568-4946(18)30461-7/b1
http://refhub.elsevier.com/S1568-4946(18)30461-7/b1
http://refhub.elsevier.com/S1568-4946(18)30461-7/b1
http://refhub.elsevier.com/S1568-4946(18)30461-7/b1
http://refhub.elsevier.com/S1568-4946(18)30461-7/b2
http://refhub.elsevier.com/S1568-4946(18)30461-7/b2
http://refhub.elsevier.com/S1568-4946(18)30461-7/b2
http://refhub.elsevier.com/S1568-4946(18)30461-7/b2
http://refhub.elsevier.com/S1568-4946(18)30461-7/b2
http://refhub.elsevier.com/S1568-4946(18)30461-7/b3
http://refhub.elsevier.com/S1568-4946(18)30461-7/b3
http://refhub.elsevier.com/S1568-4946(18)30461-7/b3
http://refhub.elsevier.com/S1568-4946(18)30461-7/b3
http://refhub.elsevier.com/S1568-4946(18)30461-7/b3
http://refhub.elsevier.com/S1568-4946(18)30461-7/b4
http://refhub.elsevier.com/S1568-4946(18)30461-7/b4
http://refhub.elsevier.com/S1568-4946(18)30461-7/b4
http://refhub.elsevier.com/S1568-4946(18)30461-7/b4
http://refhub.elsevier.com/S1568-4946(18)30461-7/b4
http://refhub.elsevier.com/S1568-4946(18)30461-7/b6
http://refhub.elsevier.com/S1568-4946(18)30461-7/b6
http://refhub.elsevier.com/S1568-4946(18)30461-7/b6
http://refhub.elsevier.com/S1568-4946(18)30461-7/b6
http://refhub.elsevier.com/S1568-4946(18)30461-7/b6
http://refhub.elsevier.com/S1568-4946(18)30461-7/b8
http://refhub.elsevier.com/S1568-4946(18)30461-7/b8
http://refhub.elsevier.com/S1568-4946(18)30461-7/b8
http://refhub.elsevier.com/S1568-4946(18)30461-7/b8
http://refhub.elsevier.com/S1568-4946(18)30461-7/b8
http://refhub.elsevier.com/S1568-4946(18)30461-7/b12
http://refhub.elsevier.com/S1568-4946(18)30461-7/b12
http://refhub.elsevier.com/S1568-4946(18)30461-7/b12
http://refhub.elsevier.com/S1568-4946(18)30461-7/b12
http://refhub.elsevier.com/S1568-4946(18)30461-7/b12
http://refhub.elsevier.com/S1568-4946(18)30461-7/b15
http://refhub.elsevier.com/S1568-4946(18)30461-7/b15
http://refhub.elsevier.com/S1568-4946(18)30461-7/b15
http://refhub.elsevier.com/S1568-4946(18)30461-7/b18
http://refhub.elsevier.com/S1568-4946(18)30461-7/b18
http://refhub.elsevier.com/S1568-4946(18)30461-7/b18
http://refhub.elsevier.com/S1568-4946(18)30461-7/b20
http://refhub.elsevier.com/S1568-4946(18)30461-7/b20
http://refhub.elsevier.com/S1568-4946(18)30461-7/b20
http://refhub.elsevier.com/S1568-4946(18)30461-7/b22
http://refhub.elsevier.com/S1568-4946(18)30461-7/b22
http://refhub.elsevier.com/S1568-4946(18)30461-7/b22
http://refhub.elsevier.com/S1568-4946(18)30461-7/b23
http://refhub.elsevier.com/S1568-4946(18)30461-7/b23
http://refhub.elsevier.com/S1568-4946(18)30461-7/b23
http://refhub.elsevier.com/S1568-4946(18)30461-7/b23
http://refhub.elsevier.com/S1568-4946(18)30461-7/b23

H. Akcan / Applied Soft Computing Journal 73 (2018) 83–95 95

[24] L. Gouveia, A. Paias, D. Sharma, Modeling and solving the rooted distance-
constrainedminimumspanning tree problem, Comput. OR 35 (2) (2008) 600–
613.

[25] M. Ehrgott, X. Gandibleux, A survey and annotated bibliography of multiob-
jective combinatorial optimization, OR Spektrum 22 (2000) 425–460.

[26] H.W.Hamacher, G. Ruhe, On spanning tree problemswithmultiple objectives,
Ann. Oper. Res. 52 (4) (1994) 209–230.

[27] S. Steiner, T. Radzik, Computing all efficient solutions of the biobjective
minimum spanning tree problem, Comput. OR 35 (1) (2008) 198–211.

[28] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, 1989.

http://refhub.elsevier.com/S1568-4946(18)30461-7/b24
http://refhub.elsevier.com/S1568-4946(18)30461-7/b24
http://refhub.elsevier.com/S1568-4946(18)30461-7/b24
http://refhub.elsevier.com/S1568-4946(18)30461-7/b24
http://refhub.elsevier.com/S1568-4946(18)30461-7/b24
http://refhub.elsevier.com/S1568-4946(18)30461-7/b25
http://refhub.elsevier.com/S1568-4946(18)30461-7/b25
http://refhub.elsevier.com/S1568-4946(18)30461-7/b25
http://refhub.elsevier.com/S1568-4946(18)30461-7/b26
http://refhub.elsevier.com/S1568-4946(18)30461-7/b26
http://refhub.elsevier.com/S1568-4946(18)30461-7/b26
http://refhub.elsevier.com/S1568-4946(18)30461-7/b27
http://refhub.elsevier.com/S1568-4946(18)30461-7/b27
http://refhub.elsevier.com/S1568-4946(18)30461-7/b27
http://refhub.elsevier.com/S1568-4946(18)30461-7/b28
http://refhub.elsevier.com/S1568-4946(18)30461-7/b28
http://refhub.elsevier.com/S1568-4946(18)30461-7/b28

	A genetic algorithm based solution to the Minimum-Cost Bounded-Error Calibration Tree problem
	Introduction
	Related Works
	The Problem Definition
	Extreme efficient solution generation
	Heuristic Solution
	Chromosome encoding
	Chromosome generation
	Initiating a population
	Crossover
	Calculating extreme efficient solutions
	Mutation

	Experimental results
	Datasets and fitness functions
	Parameter tuning for GAWES
	Comparing GAWES with GA

	Conclusion
	References

