
Int. J. Production Economics 128 (2010) 144–152
Contents lists available at ScienceDirect
Int. J. Production Economics
0925-52

doi:10.1

n Corr

Chung H

Tel.: +8

E-m
journal homepage: www.elsevier.com/locate/ijpe
A hybrid genetic algorithm for no-wait flowshop scheduling problem
Lin-Yu Tseng a,b,n, Ya-Tai Lin b

a Institute of Networking and Multimedia, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan
b Department of Computer Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan
a r t i c l e i n f o

Article history:

Received 13 September 2007

Accepted 4 June 2009
Available online 17 June 2010

Keywords:

Genetic algorithm

Local search

Hybrid genetic algorithm

No-wait flowshop scheduling
73/$ - see front matter & 2010 Elsevier B.V. A

016/j.ijpe.2010.06.006

esponding author at: Institute of Networkin

sing University, 250 Kuo Kuang Road, Taich

86 4 22874020; fax: +886 4 22853869.

ail address: lytseng@cs.nchu.edu.tw (L.-Y. Tse
a b s t r a c t

In this paper, a hybrid genetic algorithm is proposed to solve the no-wait flowshop scheduling problem

with the makespan objective. The proposed algorithm hybridizes the genetic algorithm and a novel

local search scheme. The OA-crossover operator is designed to enhance the capability of intensification

in the genetic algorithm. The proposed local search scheme combines two local search methods: the

Insertion Search (IS) and a novel local search method called the Insertion Search with Cut-and-Repair

(ISCR). These two local search methods play different roles in the search process. The Insertion Search is

responsible for searching a small neighborhood while the Insertion Search with Cut-and-Repair is

responsible for searching a large neighborhood. The experimental results show the advantage of

combining the two local search methods. Extensive experiments were conducted to evaluate the

proposed hybrid genetic algorithm and the results revealed that the proposed algorithm is very

competitive. It obtained the same best solutions that were reported in the literature for all problems in

the benchmark provided by Carlier (1978). Also, it improved 5 out of the 21 current best solutions

reported in the literature and achieved the current best solutions for 14 of the remaining 16 problems in

the benchmark presented by Reeves (1995). Furthermore, the proposed algorithm was applied to

effectively solve the 120 problems in the benchmark provided by Taillard (1990).

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The flowshop scheduling problem is an important scheduling
problem and has been extensively studied since it was proposed
in 1954 by Johnson. We consider the flowshop scheduling
problem with the no-wait constraints in this paper. In a no-wait
flowshop scheduling, once a job is started on the first machine, it
has to be continuously processed through completion at the last
machine without interuptions. In other words, the starting time of
a job on the first machine may have to be delayed in order to meet
the no-wait constraints. The problem is formally defined in
Section 2.

The no-wait flowshop scheduling problem with makespan
criterion was proved NP-hard by Rock (1984) (Reeves, 1995).
Therefore, instead of trying to find the optimal solution, efforts
have been devoted to designing the heuristic and metaheuristic
methods in order to find high-quality solutions in a reasonable
computation time.
ll rights reserved.

g and Multimedia, National

ung, Taiwan.

ng).
Some heuristic algorithms were proposed to solve the no-wait
flowshop scheduling problem. For example, Reddi and Rama-
moorthy (1972), Wismer (1972) and Bonney and Gundry (1976)
proposed their methods in the 1970s. King and Spachis (1980)
proposed their method in the 1980s. In the 1990s, Gangadharan
and Rajendran (1993) and Rajendran (1994) proposed two
heuristic methods GAN–RAJ and RAJ. They showed by experi-
ments that these methods outperformed the previous heuristic
methods reported in the literature. Both GAN–RAJ and RAJ use the
same method to generate the initial sequence. After the initial
sequence is generated, GAN–RAJ picks the job one by one from the
beginning of the sequence to the end of the sequence and inserts
the pick-up job into every position behind the original position of
the pick-up job trying to find a better scheduling. The only
difference between RAJ and GAN–RAJ is that RAJ inserts the pick-
up job into positions between (h+1)/2 and h+1, where h is the
position of the pick-up job. The performance of RAJ is shown to be
better than that of GAN–RAJ.

Recently, several metaheuristic methods were proposed to
solve this problem. Aldowaisan and Allahverdi (2003) designed
methods based on simulated annealing and genetic algorithm,
respectively. The proposed methods use local search methods that
combine NEH heuristic, the insertion operator and the exchange
operator. Their methods outperform RAJ heuristic. Schuster and
Framinan (2003) presented two metaheuristic methods: the

www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2010.06.006
mailto:lytseng@cs.nchu.edu.tw
dx.doi.org/10.1016/j.ijpe.2010.06.006

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152 145
variable neighborhood search (VNS) and the algorithm (GASA)
that hybridizes the genetic algorithm (GA) and the simulated
annealing (SA). Their methods also perform better than RAJ.
Grabowski and Pempera (2005) proposed three methods based on
tabu search (TS): TS, TS+M and TS+MP, In TS, a single insertion
move is used as the neighborhood search method. In TS+M,
multiple insertion moves are used, while in TS+MP, single
insertion move is used and if the solution is not improved after
a number of consecutive iteration, multiple insertion moves will
be used. Revealed by experimental results, these tabu search
methods outperform the VNS and the GASA. Liu et al. (2007)
proposed algorithms based on the particle swarm optimization
(PSO). They developed two local search methods: the NEH-based
local search method and the SA-based local search method. Then,
they hybridized the PSO and the NEH-based local search method
as their first algorithm, and they hybridized the POS and the
SA-based local search method as their second algorithm. Both
methods outperform the VNS and the GASA but are slightly
inferior to tabu search methods. In addition to above mentioned
studies, recently Lin et al. (2008) developed new features of ant
colony optimization for flowshop scheduling problems. Haouari
and Hidri (2008) proposed a new lower bound for the hybrid
flowshop scheduling problem. Liu and Kozan (2009) considered
four inter-machine buffer conditions in the flowshop scheduling
problem.

In the recent years, many hybrid genetic algorithms have been
developed for various kinds of problems including the scheduling
problem. In general, the genetic algorithm acting as a global
search scheme is hybridized with a local search scheme in order
to enhance both diversification and intensification (Reeves, 1994).
Some hybrid genetic algorithms for scheduling problems are
surveyed in the following. Liaw (2000) hybridized the genetic
algorithm with the tabu search to solve the open shop scheduling
problem and the hybrid GA found better solutions for some
benchmark problems. Gonc-alves et al. (2005) proposed a local
search method based on the critical path and combined the
genetic algorithm and this local search method to solve the job
shop scheduling problem. Park (2001) (Reeves, 1995) developed
the greedy interchange local optimization algorithm as the local
search scheme in the hybrid genetic algorithm for the vehicle
scheduling problem with due times and time deadlines and
obtained better results than previous research works. Valls et al.
(2008) presented a hybrid genetic algorithm for the resource-
constrained project scheduling problem. They used two-phase
strategy in their algorithm. Also the peak crossover operator and
the double justification operator specifically designed for the
resource-constrained project scheduling problem were used.
Their results outperform the previous research works. For the
no-wait flowshop scheduling problem considered in this study,
Gonazelez et al. (1995) proposed a hybrid genetic algorithm that
hybridized the genetic algorithm with three problem oriented
operators based on the heuristics developed by Gupta (1971),
Palmer (1965) and Rajendran (1994), respectively. The results
obtained are better than those obtained by the traditional genetic
algorithm.

In this paper, an algorithm is proposed that hybridizes the
genetic algorithm and two local search methods. The genetic
algorithm acts as the global search scheme. Insertion Search (IS) is
used to search small neighborhoods while Insertion Search with
Cut-and-Repair (ISCR) is used to search large neighborhoods. The
combination of IS and ISCR results in a novel powerful local search
scheme. As the experimental results on benchmark problems
show, the proposed hybrid GA outperforms the VNS (Schuster
and Framinan, 2003), the GASA (Schuster and Framinan, 2003),
the tabu search methods (Grabowski and Pempera, 2005) and the
PSO-based methods (Liu et al., 2007).
2. The no-wait flowshop scheduling problem

The no-wait flowshop scheduling problem is formally defined
in the following. n jobs {J1, J2, y, Jn} are to be processed on a series
of m machines {M1, M2, y, Mm} sequentially. The processing time
of job Ji on machine Mj is given as Tij. At any time, each job can be
processed on at most one machine and each machine can process
at most one job. Also, once a job is processed on a machine; it
cannot be terminated before completion. The sequence in which
the jobs are to be processed is the same for each machine. The no-
wait constraint requires that the starting time of job Ji on machine
Mj be equal to the completion time of job Ji on machine Mj�1 for
each i and each j. And the objective is to find a permutation of jobs
such that the makespan is minimized. Now let p¼{p1, p2, y, pn}
be a permutation of jobs and let C(pi, j) be defined as follows:

Cðp1,1Þ ¼ Tp1 ,1

Cðp1,jÞ ¼ Cðp1,j�1ÞþTp1 ,j, j¼ 2,3,:::,m

Cðpi,jÞ ¼ Cðpi�1,1ÞþPðpiÞþ
Xj

l ¼ 1

Tpi ,l, i¼ 2,3,:::,n; j¼ 2,3,:::,m

where

PðpiÞ ¼max 0, max
2r jrm

Cðpi�1,jÞ� Cðpi�1,1Þþ
Xj�1

l ¼ 1

Tpi ,l

 ! !()
,

i¼ 2,3,:::,n

The makespan of the scheduling corresponding to p is defined
as

CmaxðpÞ ¼ Cðpn,mÞ

And the objective of the no-wait flowshop scheduling problem
is to find a permutation p* in the set of all permutations P such
that

Cmaxðp*Þ ¼ min
pA
QCmaxðpÞ

is satisfied.
3. The proposed hybrid genetic algorithm

In this section, we described the proposed hybrid genetic
algorithm for the no-wait flowshop scheduling problem. Our
algorithm hybridized the genetic algorithm and two local search
methods. The genetic algorithm acts as a global search method in
our algorithm because it is good at searching the whole solution
space globally. The hybridization of the genetic algorithm and the
local search methods makes the search more effective and more
efficient as shown by experimental results. Moreover, an
orthogonal-array-based crossover operator (OA-crossover) was
utilized in our algorithm to improve the performance. In the
following the proposed hybrid genetic algorithm is described.
The details of the OA-crossover and two local search methods will
be described in the subsections thereinafter.

/*initialization*/
Step 1: Set the values of the population size (Ps), the crossover
rate (Pc), the mutation rate (Pm) and the termination condition
(Max_Stuck). Set Sl ¼0.
Step 2: Produce the initial population that consists of Ps

randomly generated chromosomes.
Step 3: Evaluate the makespan of each chromosome in the
population. Deposit the chromosome with the best makespan
in BEST and its makespan in C*.
/*crossover, local search and selection*/

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152146
Step 4: Repeat Step 5 to Step 6 Ps� Pc times.
Step 5: Randomly choose two chromosomes P1 and P2. Apply
OA-crossover to the parent chromosomes P1 and P2 to produce
the child chromosome Child.
Step 6: Apply Insertion Search to Child. P1 and P2 are replaced
by the best two of P1, P2 and Child.
Step 7: Find the chromosome pb with the best makespan Cb in
the population. If CboC* then BEST’pb, C*’Cb, and set Sl’0,
and apply Insertion Search with Cut-and-Repair to BEST.
Otherwise, Sl’Sl+1.
/*mutation*/
Step 8: Randomly choose Ps� Pm chromosomes from the
population and apply the mutation operator to these chromo-
somes.
Step 9: If Sl4Max_Stuck then stop. Otherwise, go to Step 4.

The loop (Steps 5–6) performs the OA-crossover and the IS
local search Ps� Pc times. After that, the ISCR local search will be
applied if the current best solution had been improved (Step 7).
And then Ps� Pm mutations were performed (Step 8). Step 4 to
Step 8 can be viewed as a generation. In Step 6, the local search
method named Insertion_Search (IS) is applied to Child. The
Insertion Search is used as the main local search operator. Every
time the current best solution is improved, the other local search
method named Insertion Search with Cut-and-Repair (ISCR) is
applied in order to search a larger neighborhood of the current
best solution. In Step 6, the selection is an eugenic one. The Child

will replace the parent only if it is better than the worse parent.
Finally, if the number of stuck generations is more than
Max_Stuck, the algorithm terminates.
3.1. Representation of chromosome and definition of fitness function

In genetic algorithms, a chromosome represents a solution in
the solution space. For the permutation flowshop scheduling
problem, we use a permutation p of jobs as a chromosome. For
example, suppose there are six jobs and four machines in a
flowshop scheduling problem. A permutation p¼[2, 3, 1, 6, 5, 4] is
a permutation of six jobs and this chromosome represent a
scheduling in which the sequence of jobs on each machine is J2, J3,
J1, J6, J5, J4.

The definition of fitness function is just the reciprocal of the
objective function value, that is, the reciprocal of the makespan of
the scheduling represented by the chromosome.
3 5 4

6 2 7

1 2 6

1 4 0

0 7

5 3

Parent 1

Parent 2

1

)2(L

0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

First cut point Second cut point

3 5 7 1 4 0 2 6Child

Fig. 1. An example that illustrates the repair scheme.
3.2. OA-crossover

The crossover operator is used in genetic algorithms to find
better solutions by recombining good genes from different parent
chromosomes. One cut point or two cut points were usually used
in the crossover operator. As a generalization to this, multiple cut
points are used in the proposed crossover. Father chromosome
and mother chromosome are randomly divided into multiple
subsequences. Several recombination of subsequences based on
the orthogonal array are sampled and the Taguchi method Tsai
et al. (2004) is used to select better subsequences for recombina-
tion. For details of the orthogonal array please refer to Appendix.
The OA-crossover had been used in Tsai et al. (2004) to solve the
global numerical optimization problem and used in Ho and Chen
(2000) to solve the traveling salesman problem. In this study, we
use three cut points for Carlier’s benchmark (Carlier, 1978) and six
cut points for both Reeves’ benchmark problems (Reeves, 1995)
and Taillard’s benchmark problems (Taillard, 1990). According to
our experience, it is a good choice to increase the number of cut
points in the OA-crossover as the size of the instance increases.
The OA-crossover is described in the following:

Step 1: Let N be the number of pieces into which the user
wants to cut parent chromosomes P1 and P2 for recombination.
Generate the orthogonal array LN+ 1(2N).
Step 2: Randomly choose parent chromosomes P1 and P2.
Randomly choose N�1 cut points to cut P1 and P2 into N

subsequences.
Step 3: Consult the ith row of the OA LN +1(2N) and generate a
sampled child Ci, for i¼1, 2, y, N+1. The jth subsequence of Ci

is taken from the jth subsequence of P1 if the level of the jth
factor in row i of the OA is 0. Otherwise, the jth subsequence of
Ci is taken from the jth subsequence of P2. Repair Ci whenever
it is necessary. (Repair scheme will be described later.)
Step 4: Calculate the evaluation value Ei of each sampled child
Ci, for i¼1, 2, y, N+1. The evaluation value Ei is the fitness
value (i.e. the reciprocal of the makespan) of the chromosome
Ci.
Step 5: Calculate the main effect Fjk of factor j with level k, for
j¼1, 2, y, N and k¼0, 1.
Step 6: Find the best level for each factor. The best level of
factor j is k if Fjk¼max{Fj0, Fj1}. Use the best levels of all factors
to generate another child CN +2 (Taguchi method). Repair CN +2

whenever it is necessary. Calculate the evaluation value EN +2.
Step 7: From C1, C2, y, CN+ 2, choose the one with the best
evaluation value to be the child chromosome.

The sampled child Ci generated in Step 3 and the child CN+ 2

generated by Taguchi method may need to be repaired. The
following example illustrates the repair scheme. Fig. 1 shows two
parent chromosomes Parent 1 and Parent 2 together with an OA
L4(23). When generating the sampled child C2, the second row of
the OA L4(23) is consulted. Since the content of this row is 011, the
first subsequence of C2 is taken to be the first subsequence of
Parent 1, which is 3, 5. The second subsequence of C2 is taken to
be the second subsequence of Parent 2, which is 7, 1. Up to now,
it is all right and nothing needed to be repaired. The third
subsequence of C2 is taken to be the third subsequence of Parent
2, which is 4, 0, 5, 3. Now it needs to be repaired because 5, 3
already appeared in C2. So the last two places of C2 are cleared and
the jobs not yet appear in C2 are taken from Parent 1 to put into
these two places in the order they appear in Parent 1.
3.3. Two local search methods

The purpose of the local search is to find a better solution from
the neighborhood of a solution. Let p be a solution in the solution
space. The neighborhood of p, N(p) is defined as the set of all
solutions that can be reached by applying some operator to
solution p. Two operators are often used in algorithms designed
for solving the flowshop scheduling problem. They are the
insertion operator Ins(x, y) and the exchange operator Exch(x, y).
Both operators were used by Taillard (1990). The insertion

3 5 2 1 4 0

3 5 2 1 4 0

3 5 2 1 4 0

Initial Solution

Choose cut
point

cut point (3, 4)

Repair process
3

3 5 2 1 4 05

3 5 2 1 4 04

3 5 2 1 4 00

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152 147
operator was also used by Grabowski and Pempera (2005).
Ins(x, y) picks out the job at position x and inserts it into position
y. Exch(x, y) exchanges the positions of the job at position x and
the job at position y. After doing some experiments, we observed
that the insertion operator is superior to the exchange operator
in local search performance. Therefore, we use the insertion
operator in the local search. As for the exchange operator, we use
it in mutation. For a chromosome consists of n jobs, as many as
n� (n-1) insertion operators can be applied to this chromosome.
But applying all n� (n-1) insertion operators is not efficient, so a
parameter a is used to control the range of positions into which a
pick-out job can be inserted. The first local search method
(Insertion Search) utilized in our algorithm is described in the
following. In this procedure, a permutation p represents a
chromosome (a solution) and p(i) represents the job at the ith
position of p. C represents the makespan of p.

Procedure Insertion-Search (p, c, a)

Fig. 2. An example that illustrates the Cut-and-Repair procedure.
Step 1: Set the search List SL’{1, 2, y, n}.
Step 2: If SL is not empty, randomly choose p from SL and
remove it from SL, then go to Step 3. Otherwise, stop and
return p and C.
Step 3: Execute insertion operators Ins(p, k) for k¼p�1,
p�2, y, max(p-a, 1) and p+1, p+2,y, min(p+a, n). Calculate
the makespan after executing each insertion operator and
choose the best one. If the makespan of the best solution is
better than C, let p be the best solution and C be the makespan
of the best solution and go to Step 1. Otherwise, go to Step 2.

It is easily seen from the above procedure that Insertion Search
searches only a small neighborhood. Hence, Insertion Search may
sometimes be trapped in a local optimum. So we proposed
another local search method called Insertion Search with Cut-
and-Repair (ISCR) that has larger diversification ability and helps
the search jump out of the local optima. ISCR uses a procedure
named Cut-and-Repair. So we introduce procedure Cut-and-
Repair first. Procedure Cut-and-Repair randomly chooses two
pairs of adjacent jobs in p as cut points. Then it cuts p between
each of these two pairs of adjacent jobs and picks another job to
insert into the cutting position. This procedure is described in the
following:
Procedure Cut-and-Repair (p, c)
Step 1: Set Cutting List CL’f and Moving List ML’f.
Step 2: Randomly choose two pairs of adjacent jobs as cut
points. Put the two cut points in CL.
Step 3: If CL is not empty, randomly choose one cut point
(cp, cp+1) from CL and go to Step 4. Otherwise, stop and return
p and C.
Step 4: For tA{1, 2, y, cp�1}, execute Ins(t, cp). For tA{cp+2,
cp+3, y, n}, execute Ins(t, cp+1). From above insertion
operators, find the eight operators that result in the smallest
amount of makespan. Put these eight operators in ML.
Step 5: Generate a random number y in [0, 1). If y is greater
than 0.5, choose the best operator in ML; otherwise, randomly
choose an operator from ML. Apply this operator to p and
update C accordingly. Set ML’f and go to Step 3.

A simple example is given in Fig. 2 that illustrates the Cut-and-
Repair operation. Let the solution p be {3, 5, 2, 1, 4, 0}. Suppose
Cut Point (3, 4) is chosen from the Cutting List CL (Step 3), every
job in other position will be taken and inserted into this cut point
(as illustrated by Fig. 2), and the best eight operations will be put
in the Moving List (Step 4). Finally, one of the eight operations will
be applied to p.
Now we describe the second local search method, which
searches a larger neighborhood, in the following:

Procedure Insertion-Search-with-Cut-and-Repair (p, c, a,
Max_Loop)
Step 1: p*’p, c*’c and iter’0.
Step 2: Execute Insertion-Search (p, c, a) with return values in
p and c. If coc* then p*’p and c*’c.
Step 3: Execute Cut-and-Repair (p, c) with return values in p
and c.
Step 4: iter’iter+1. If iterZMax_Loop then stop and return p*

and c*. Otherwise, go to Step 2.

3.4. Mutation

The exchange operator is used as the mutation operator.
Ps� Pm chromosomes are randomly chosen from the population.
For each chosen chromosome, Exch(x, y) is executed t times,
where x, y are randomly chosen positions and t is an integer
randomly drawn from 1 to T with T a predefined integer
parameter.
4. Experimental results

The proposed hybrid genetic algorithm was implemented
using C++ language on a personal computer of which the CPU is
Intel Pentium III 1266 MHz and the memory size is 1 GB and the
operating system is Windows XP. In order to compare the
performance of our method with those of other methods
(Grabowski and Pempera, 2005; Liu et al., 2007; Schuster and
Framinan, 2003), we conducted experiments on 29 benchmark
problems from OR-Library, which consists of eight problems
(car1, car2, y, car8) provided by Carlier (Carlier, 1978) and
21 problems (rec01, rec03, y, rec41) provided by Reeves (1995).

We first did an experiment to compare the performance of two
local search methods. Then we devised an experiment to compare
the performance of the primitive GA, the GA with Insertion
Search, the GA with Insertion Search with Cut-and-Repair, and the
proposed hybrid GA. Finally, we compared the performance of the
proposed hybrid genetic algorithm with those of other algorithms
reported in the literature by running the proposed algorithm on
the 29 benchmark problems.

Table 2
Comparison of primitive GA and hybrid GAs.

Methods Parameters Result

Ps Max_Stuck Max_Loop a1 a2 AvgPRD AvgTime

n/2 10 10.7819 0.0065

n/2 20 10.2037 0.0096

n/2 30 9.9156 0.0154

n 10 4.8778 0.0188

n 20 4.5064 0.0257

Primitive GA n 30 4.2379 0.0348

2n 10 1.7330 0.0433

2n 20 0.8915 0.0618

2n 30 1.1057 0.0830

3n 10 0.1348 0.0772

3n 20 -0.0098 0.1016

3n 30 -0.5770 0.1212

10n 30 -3.2127 0.4205

GA+IS n/2 10 n/2 -5.5974 0.2949

n/2 10 n -5.9784 0.4172

GA+ISCR n/2 10 2 n/2 -6.1497 0.6234

n/2 10 2 n -6.3012 0.8980

n/2 10 2 n/5 n -4.3684 0.0833

n/2 10 2 n/2 n -5.5774 0.2511

n/2 10 2 n n -5.9840 0.4188

n/2 10 5 n/5 n -4.7756 0.0810

Hybrid GA n/2 10 5 n/2 n -5.7078 0.3049

n/2 10 5 n n -6.0426 0.3797

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152148
4.1. Comparison of two local search methods

In this comparison test, seven problems were used. These
seven problems consisted of the first problem taken from each
of the sets 20�5, 20�10, 20�15, 30�10, 30�15, 50�10 and
75�20 of the benchmark provided by Reeves (1995). Because the
performances of local search methods were sensitive to initial
solutions, we randomly generated 10 solutions for each problem
and these solutions were used as the initial solutions for the two
local search methods. The comparison of the performances of two
local search methods is shown in Table 1. AvgTime denotes the
average CPU time (in seconds) of 10 runs. AvgPRD denotes the
average percentage relative difference, which is defined as
(Cavg�C*)/C*

�100% with C* being the makespan of the best
solution found by RAJ heuristic. With the first glance at Table 1,
one gets the impression that Insertion Search spends less
computation time but obtains inferior quality solutions and on
the contrary, Insertion Search with Cut-and-Repair obtains better
quality solutions by using more computation time. This is true
because the latter uses the former as a subroutine. Next, let us
examine the value of a. The quality of solution is improved
significantly when the value of a is raised from n/5 to n/2. On the
other hand, the quality of solution is improved less significantly
when the value of a is raised from n/2 to n. For Insertion Search
with Cut-and-Repair, the quality of solution is improved as the
value of Max_Loop increases.
n/2 10 10 n/5 n -5.5953 0.1089

n/2 10 10 n/2 n -6.0082 0.2551

n/2 10 10 n n -6.1909 0.3627

n 20 10 n/2 n -6.3365 0.8652

2n 30 10 n n -6.5802 3.8460
4.2. Comparison of primitive GA with hybrid GA

In this experiment, the same seven problems used in
Section 4.1 were used. Four algorithms, namely the primitive
GA, the GA with Insertion Search, the GA with Insertion Search
with Cut-and-Repair, and the proposed hybrid GA were run on
these seven problems 10 times. The average CPU time (AvgTime)
and the average percentage relative difference (AvgPRD) were
reported in Table 2. For all four algorithms, the crossover
probability Pc is set to 50%, the orthogonal array used for
crossover is L8(27), the mutation probability is set to 5%, and the
parameter T used in mutation is set to 5. Other parameter settings
are shown in Table 2. Ps represents the population size, Max_Stuck

represents the termination condition, a1 represents the search
range for Insertion Search, a2 and Max_Loop represent the search
range and the termination condition for Insertion Search with
Table 1
Comparison of two local search methods.

Methods Parameters Result

Max_Loop a AvgPRD AvgTime

Insertion Search n/5 4.980456 0.000671

n/2 -0.708563 0.001571

n -1.997173 0.002231

2 n/5 3.761958 0.000893

5 n/5 1.772379 0.001800

10 n/5 -0.354806 0.003348

Insertion Search 20 n/5 -1.698037 0.006696

With Cut-and-Repair 2 n/2 -1.183419 0.002009

5 n/2 -2.604320 0.004018

10 n/2 -3.447245 0.007143

20 n/2 -4.158473 0.012500

2 n -2.686445 0.003348

5 n -3.519977 0.005134

10 n -4.492143 0.009821

20 n -5.028473 0.018973
Cut-and-Repair. AvgTime and AvgPRD are the same as defined in
Section 4.1.

From Table 2, it is observed that with comparable computation
time, the hybrid GA obtains best quality solutions, then come the
GA with Insertion Search with Cut-and-Repair and the GA with
Insertion Search, and finally comes the primitive GA. The
primitive GA does not perform well even when the population
size is enlarged to 10n because the GA is suitable for global search
but may not be appropriate for local search. With the help of local
search methods, the quality of solutions improved. Containing
both IS and ISCR, the proposed hybrid GA performs best as might
be expected.
4.3. Comparison with other methods

The performance of the proposed hybrid GA was compared
with the performances of those metaheruistic methods proposed
by Schuster and Framinan (2003), Grabowski and Pempera (2005)
and Liu et al. (2007). The comparison is shown in Table 3.
‘‘Instance’’ denotes the problem name, ‘‘n’’ denotes the number of
jobs, ‘‘m’’ denotes the number of machines, ‘‘Opt’’ gives the
makespans of the optimal solution of Carlier’s benchmark
problems, ‘‘RAJ’’ represents the results by RAJ heuristic
(Rajendran, 1994), ‘‘VNS’’ and ‘‘GASA’’ represents the results of
Schuster and Framinan (2003), ‘‘Tabu Search’’ represents the
results of Grabowski and Pempera (2005), ‘‘HPSO’’ represents the
results of Liu et al. (2007), and ‘‘HGA’’ represents the proposed
hybrid GA. Three methods: TS, TS+M and TS+MP were proposed
in Tabu Search (Grabowski and Pempera, 2005), so the column
‘‘Method’’ denotes which method that obtains the best solution.
The parameter settings for the proposed hybrid GA are listed in
Table 4.

Table 3
Performance comparison with five other methods.

Instance n�m Opt RAJ VNS GASA Tabu Search HPSO HGA

Min PRD Time Min PRD Time Method Min PRD Time PRD Time Min PRD Time

car1 11�5 8142 8288 8201 0.70 0 8142 0.00 1 All 8142 0.00 0.1 0.00 0.4 8142 0.00 0.002

car2 13�4 8242 8610 8256 0.20 0 8242 0.00 1 All 8242 0.00 0.1 0.00 0.7 8242 0.00 0.002

car3 12�5 8866 9226 8866 0.00 0 8866 0.00 1 All 8866 0.00 0.1 0.00 0.9 8866 0.00 0.002

car4 14�4 9195 10,119 9348 1.60 0 9195 0.00 2 All 9195 0.00 0.1 0.00 1.4 9195 0.00 0.000

car5 10�6 9159 10,039 9496 3.50 0 9159 0.00 1 All 9159 0.00 0.1 0.00 0.6 9159 0.00 0.002

car6 8�9 9690 10,161 9690 0.00 0 9690 0.00 1 All 9690 0.00 0.1 0.00 0.3 9690 0.00 0.000

car7 7�7 7705 7903 7705 0.00 0 7705 0.00 0 All 7705 0.00 0.1 0.00 0.2 7705 0.00 0.000

car8 8�8 9372 9515 9372 0.00 0 9372 0.00 1 All 9372 0.00 0.1 0.00 0.3 9372 0.00 0.000

rec01 20�5 1590 1546 �2.77 0 1527 �3.96 6 TS 1526 �4.03 0.2 �3.77 3.9 1526 �4.03 0.009

rec03 20�5 1457 1394 �4.32 0 1392 �4.46 6 All 1361 �6.59 0.2 �6.59 4.8 1361 �6.59 0.006

rec05 20�5 1637 1522 �7.03 0 1524 �6.90 7 TS+MP 1511 �7.70 0.2 �7.39 4.1 1511 �7.70 0.008

rec07 20�10 2119 2070 �2.31 0 2046 �3.45 12 All 2042 �3.63 0.2 �3.63 6.6 2042 �3.63 0.008

rec09 20�10 2141 2090 �2.38 0 2045 �4.48 11 TS 2042 �4.62 0.3 �4.58 6.7 2042 �4.62 0.008

rec11 20�10 1946 1916 �1.54 0 1881 �3.34 10 All 1881 �3.34 0.2 �3.34 7.0 1881 �3.34 0.008

rec13 20�15 2709 2553 �5.76 0 2556 �5.65 17 All 2545 �6.05 0.3 �6.05 11.0 2545 �6.05 0.009

rec15 20�15 2691 2532 �5.91 0 2529 �6.02 17 TS+M 2529 �6.02 0.3 �6.02 8.6 2529 �6.02 0.008

rec17 20�15 2740 2599 �5.15 0 2590 �5.47 16 All 2587 �5.58 0.3 �5.58 8.6 2587 �5.58 0.008

rec19 30�10 3157 2918 �7.57 1 2895 �8.30 34 TS 2850 �9.72 0.4 �9.15 23.0 2850 �9.72 0.034

rec21 30�10 3015 2888 �4.21 1 2948 �2.22 35 TS 2823 �6.37 0.4 �5.70 24.0 2829 �6.17 0.030

rec23 30�10 3030 2704 �10.76 0 2827 �6.70 35 TS+MP 2700 �10.89 0.4 �10.80 24.0 2700 �10.89 0.025

rec25 30�15 3835 3626 �5.45 1 3732 �2.69 55 TS+M 3593 �6.31 0.5 �5.71 32.0 3593 �6.31 0.031

rec27 30�15 3655 3442 �5.83 1 3560 �2.60 51 TS+M 3432 �6.10 0.5 �6.13 39.0 3431 �6.13 0.031

rec29 30�15 3583 3324 �7.23 1 3440 �3.99 54 TS+M 3291 �8.15 0.5 �7.81 31.0 3291 �8.15 0.031

rec31 50�10 4631 4413 �4.71 5 4757 2.72 147 TS+MP 4343 �6.22 1.1 �5.92 122.0 4334 �6.41 0.267

rec33 50�10 4770 4515 �5.35 7 4998 4.78 145 TS+MP 4466 �6.37 1.1 �5.51 116.0 4458 �6.54 0.252

rec35 50�10 4718 4458 �5.51 7 4891 3.67 146 TS+M 4427 �6.17 1.1 �6.02 105.0 4424 �6.23 0.225

rec37 75�20 8979 8081 �10.00 122 9508 5.89 907 TS+M 8127 �9.49 2.6 �8.89 635.0 8121 �9.56 1.447

rec39 75�20 9158 8671 �5.32 106 9964 8.80 890 TS 8517 �7.00 2.5 �6.79 897.0 8505 �7.13 1.283

rec41 75�20 9344 8652 �7.41 110 9978 6.79 940 TS+MP 8520 �8.82 2.6 �7.94 883.0 8505 �8.98 1.073

Table 4
Parameter settings for the hybrid GA.

Benchmark Ps Pc Pm Max_Stuck OA a1 a2 Max_Loop

Carlier 5 50% 5% 10 L4(23) n/2 n 5

Reever n/2 50% 5% 10 L8(27) n/2 n 10

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152 149
We had run the HGA on each problem 10 times and the
column ‘‘Time’’ denotes the average CPU time. ‘‘Min’’ represents
the makespan of the best solution found. ‘‘PRD’’ represents the
percentage relative difference (Cmin�C*)/C*

�100%, where C* is the
makespan of the known optimal solution for Carlier’s benchmark
problems but C* is the makespan of the best solution found by
RAJ heuristic for Reeves’ benchmark problems. VNS and GASA
(Schuster and Framinan, 2003) were run on a personal computer
with Athlon 1.4 GHz CPU and they were run 30 times on each
problem. Tabu Search methods (Grabowski and Pempera, 2005)
were run on a personal computer with Pentium 1.0 GHz CPU and
how many times they were run on each problem is unknown.
HPSO (Liu et al., 2007) was run on a personal computer with
Mobile Pentium IV 2.2 GHz CPU and it was run 20 times on each
problem.

It is observed from Table 3 that the HGA found the optimal
solutions for all eight Carlier’s benchmark problems with very
little computation time. For the 21 problem provided by Reeves,
the HGA improved five out of the 21 current best solutions
reported in the literature and achieved the current best solutions
for 14 of the remaining 16 problems with less computation time
than other methods. The proposed HGA efficiently finds good
quality solutions.

Table 3 shows only the short-term search capability of the
HGA. In order to find out whether the HGA will be trapped in a
local optimum and makes no progress even if more computation
time is allowed, another experiment was conducted. We ran the
HGA for the mid-term search and the long-term search. For the
mid-term search, the population size is increased to n and
Max_Stuck is increased to 20. For the long-term search, the
population size and Max_Stuck are increased to 2n and 30,
respectively, and the range for Insertion Search is increased to n.
We ran the HGA 10 times on each of Reeve’s problems. Results are
shown in Table 5. ‘‘Avg’’ denotes the average of the makespan of
each run’s best solution. From Table 5, it is noted that quality of
solution improves as the search time increased for most
problems. In the long-term search, the HGA further improved
seven out of the 21 best solutions.

The largest number of jobs in Reeves’ benchmark problems is
75 while Taillard (1990) provided benchmark problems whose
largest number of jobs is 500. So we conducted still another
experiment to test the performance of the HGA on the
120 problems presented by Taillard. The HGA was run 10 times
on each of these 120 problems and the results are given in Table 6.
The experimental results reveal that the HGA has the capability to
solve large scale problems.
5. Conclusions and future works

A hybrid genetic algorithm for the no-wait flowshop schedul-
ing problem was proposed in this paper. In this algorithm, the GA
is used as the global search scheme and is hybridized with a novel
local search scheme. An OA-based crossover operator is designed
to enhance the intensification ability of the GA. The proposed local
search scheme combines two local search methods: IS and ISCR. IS
(Insertion Search) is the local search method that searches a small
neighborhood. ISCR (Insert Search with Cut-and-Repair), with IS
as its subroutine, searches a large neighborhood. The hybridiza-
tion of the GA with these two local search methods that have

Table 6
The results of the HGA on Taillard’s benchmark problems.

Instance n�m Max Min Avg AvgTime

ta001 20�5 1485 1449 1472.7 0.041

ta002 20�5 1505 1460 1477.6 0.044

ta003 20�5 1431 1386 1406.8 0.045

ta004 20�5 1573 1521 1546.4 0.041

ta005 20�5 1445 1403 1426.6 0.047

ta006 20�5 1471 1430 1446.6 0.038

ta007 20�5 1496 1461 1479.4 0.050

ta008 20�5 1475 1433 1459.2 0.053

ta009 20�5 1429 1398 1409.2 0.038

ta010 20�5 1368 1324 1345.5 0.042

ta011 20�10 1998 1955 1972.6 0.044

ta012 20�10 2166 2123 2154.6 0.044

ta013 20�10 1942 1912 1931.1 0.045

ta014 20�10 1811 1782 1794.3 0.042

ta015 20�10 1947 1933 1934.4 0.045

ta016 20�10 1879 1827 1850.0 0.044

ta017 20�10 1971 1944 1951.5 0.059

ta018 20�10 2066 2006 2038.5 0.047

ta019 20�10 1973 1908 1953.9 0.039

ta020 20�10 2032 2001 2019.3 0.047

ta021 20�20 2972 2912 2938.5 0.044

ta022 20�20 2835 2780 2814.2 0.048

ta023 20�20 2984 2922 2962.4 0.042

ta024 20�20 2994 2967 2982.5 0.045

ta025 20�20 3017 2953 2995.1 0.045

ta026 20�20 2964 2908 2932.8 0.042

ta027 20�20 3028 2970 3004.8 0.039

ta028 20�20 2826 2763 2789.5 0.047

ta029 20�20 3009 2972 3005.3 0.039

ta030 20�20 2979 2919 2956.3 0.042

ta031 50�5 3229 3127 3198.3 2.406

ta032 50�5 3475 3438 3453.1 3.484

ta033 50�5 3277 3182 3242.5 2.669

ta034 50�5 3384 3289 3349.8 3.156

ta035 50�5 3404 3315 3369.1 3.075

ta036 50�5 3377 3324 3356.4 3.792

ta037 50�5 3280 3183 3246.4 2.653

ta038 50�5 3288 3243 3264.9 3.342

ta039 50�5 3121 3059 3088.2 3.588

ta040 50�5 3383 3301 3341.5 3.353

ta041 50�10 4306 4251 4289.1 3.173

ta042 50�10 4235 4139 4193.5 2.841

ta043 50�10 4124 4083 4108.6 2.791

ta044 50�10 4549 4480 4517.4 3.147

ta045 50�10 4367 4316 4333.2 3.727

Table 5
The mid-term and long-term search capability of the hybrid GA.

Instance n�m Short-term test Mid-term test Long-term test

Min Avg Time Min Avg Time Min Avg Time

rec01 20�5 1526 1530.2 0.009 1526 1527.4 0.019 1526 1526.0 0.047

rec03 20�5 1361 1371.2 0.006 1361 1370.2 0.016 1361 1362.7 0.038

rec05 20�5 1511 1517.1 0.008 1511 1512.7 0.016 1511 1512.9 0.053

rec07 20�10 2042 2050.0 0.008 2042 2043.5 0.017 2042 2042.5 0.048

rec09 20�10 2042 2049.9 0.008 2042 2045.3 0.016 2042 2042.3 0.053

rec11 20�10 1881 1891.7 0.008 1881 1889.9 0.017 1881 1884.9 0.044

rec13 20�15 2545 2555.6 0.009 2545 2550.5 0.020 2545 2545.7 0.039

rec15 20�15 2529 2539.0 0.008 2529 2531.2 0.017 2529 2529.6 0.045

rec17 20�15 2587 2594.4 0.008 2587 2591.0 0.017 2587 2587.0 0.045

rec19 30�10 2850 2876.0 0.034 2850 2861.4 0.086 2850 2860.3 0.234

rec21 30�10 2829 2841.3 0.030 2821 2829.4 0.084 2821 2823.7 0.245

rec23 30�10 2700 2730.3 0.025 2700 2719.5 0.095 2700 2705.7 0.278

rec25 30�15 3593 3616.4 0.031 3597 3607.1 0.083 3593 3600.8 0.219

rec27 30�15 3431 3469.1 0.031 3431 3442.6 0.097 3431 3435.1 0.263

rec29 30�15 3291 3309.9 0.031 3291 3308.7 0.073 3291 3298.6 0.220

rec31 50�10 4334 4378.8 0.267 4318 4340.9 0.997 4313 4328.4 2.833

rec33 50�10 4458 4510.1 0.252 4452 4472.5 0.809 4431 4455.6 3.469

rec35 50�10 4424 4482.8 0.225 4411 4442.1 0.988 4397 4417.9 3.052

rec37 75�20 8121 8204.7 1.447 8052 8131.9 4.834 8025 8048.9 23.502

rec39 75�20 8505 8633.6 1.283 8465 8538.7 4.967 8446 8482.9 22.559

rec41 75�20 8505 8673.4 1.073 8491 8591.0 4.328 8482 8491.8 26.691

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152150

Table 6 (continued)

Instance n�m Max Min Avg AvgTime

ta046 50�10 4332 4282 4301.6 2.930

ta047 50�10 4444 4376 4412.6 3.253

ta048 50�10 4347 4304 4331.9 3.842

ta049 50�10 4188 4162 4173.0 3.645

ta050 50�10 4304 4232 4279.0 2.878

ta051 50�20 6172 6138 6149.7 3.727

ta052 50�20 5790 5721 5751.5 2.536

ta053 50�20 5929 5847 5884.4 2.978

ta054 50�20 5827 5781 5804.7 3.683

ta055 50�20 5950 5891 5909.7 2.886

ta056 50�20 5911 5875 5890.6 3.708

ta057 50�20 6001 5937 5974.2 3.656

ta058 50�20 5971 5919 5951.0 3.166

ta059 50�20 5899 5839 5873.5 2.405

ta060 50�20 5979 5935 5963.5 3.175

ta061 100�5 6594 6492 6557.2 45.761

ta062 100�5 6469 6353 6409.4 56.869

ta063 100�5 6320 6148 6260.4 54.755

ta064 100�5 6198 6080 6159.0 45.809

ta065 100�5 6397 6254 6325.6 56.858

ta066 100�5 6296 6177 6225.7 49.164

ta067 100�5 6460 6257 6409.0 46.133

ta068 100�5 6359 6225 6308.6 61.564

ta069 100�5 6561 6443 6516.3 59.500

ta070 100�5 6592 6441 6542.5 45.503

ta071 100�10 8230 8115 8173.5 77.302

ta072 100�10 8101 7986 8048.1 56.067

ta073 100�10 8215 8057 8142.2 81.019

ta074 100�10 8505 8327 8437.5 70.181

ta075 100�10 8096 7991 8046.4 66.008

ta076 100�10 7947 7823 7883.7 85.295

ta077 100�10 8081 7915 8007.0 57.316

ta078 100�10 8105 7939 8049.2 66.153

ta079 100�10 8349 8226 8290.4 48.631

ta080 100�10 8340 8186 8255.3 61.822

ta081 100�20 10,932 10,745 10,826.6 91.084

ta082 100�20 10,847 10,655 10,762.5 62.809

ta083 100�20 10,821 10,672 10,740.4 78.780

ta084 100�20 10,797 10,630 10,679.7 102.419

ta085 100�20 10,777 10,548 10,658.2 81.913

ta086 100�20 10,853 10,700 10,753.0 80.611

ta087 100�20 11,031 10,827 10,913.6 86.192

ta088 100�20 10,992 10,863 10,905.2 84.967

ta089 100�20 10,963 10,751 10,859.0 78.608

ta090 100�20 11,067 10,794 10,928.8 86.792

ta091 200�10 15,916 15,739 15,843.5 669.517

ta092 200�10 15,764 15,534 15,645.3 651.884

ta093 200�10 16,026 15,755 15,882.4 665.973

ta094 200�10 16,111 15,842 15,927.0 544.425

ta095 200�10 15,829 15,692 15,763.8 600.841

ta096 200�10 15,731 15,622 15,669.9 493.281

ta097 200�10 16,029 15,877 15,962.3 609.767

ta098 200�10 15,933 15,733 15,833.2 546.283

ta099 200�10 15,759 15,573 15,626.2 692.870

ta100 200�10 15,934 15,803 15,869.1 669.817

ta101 200�20 20,458 20,148 20,331.3 821.692

ta102 200�20 20,889 20,539 20,763.5 845.433

ta103 200�20 20,636 20,511 20,583.8 676.202

ta104 200�20 20,753 20,461 20,594.6 757.134

ta105 200�20 20,601 20,339 20,544.4 718.309

ta106 200�20 20,780 20,501 20,661.9 756.392

ta107 200�20 20,915 20,680 20,804.3 519.278

ta108 200�20 20,814 20,614 20,665.7 758.638

ta109 200�20 20,757 20,300 20,574.9 1078.077

ta110 200�20 20,712 20,437 20,587.6 704.683

ta111 500�20 49,580 49,095 49,289.4 2115.883

ta112 500�20 50,354 49,461 49,948.2 1967.702

ta113 500�20 49,399 48,777 49,139.0 1944.677

ta114 500�20 50,004 49,283 49,657.8 2143.773

ta115 500�20 49,847 48,950 49,423.1 2204.473

ta116 500�20 50,046 49,533 49,848.4 1989.594

ta117 500�20 49,591 48,943 49,366.5 2110.389

ta118 500�20 49,942 49,277 49,675.8 1962.286

ta119 500�20 49,697 49,207 49,429.3 2547.245

ta120 500�20 50,002 49,092 49,545.6 2059.581

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152 151

Table 7
L8(27) orthogonal array.

Test
no.

Factors Evaluation
value (Ei)

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0 E1

2 0 0 0 1 1 1 1 E2

3 0 1 1 0 0 1 1 E3

4 0 1 1 1 1 0 0 E4

5 1 0 1 0 1 0 1 E5

6 1 0 1 1 0 1 0 E6

7 1 1 0 0 1 1 0 E7

L.-Y. Tseng, Y.-T. Lin / Int. J. Production Economics 128 (2010) 144–152152
different characteristics and capabilities makes the hybrid algo-
rithm an effective and efficient one. For short-term search, the
proposed algorithm found the optimal solutions for all eight
Carlier’s benchmark problems. Also, for Reeves’ benchmark
problems, the proposed algorithm improved five out of the 21
current best solutions reported in the literature and achieved the
current best solutions for 14 of the remaining 16 problems. Also,
the proposed algorithm has the capability for long-term search
and the capability to solve large scale problems. For long-term
search, it further improved seven out of the 21 best solution. As
future works, we plan to investigate the applicability of the
proposed hybrid genetic algorithm to other scheduling problems.
8 1 1 0 1 0 0 1 E8
Acknowledgements

The authors gratefully acknowledge the partly support of
National Science Council of ROC under the contract NSC 96-2628-
E-005-074-MY3 and the partly support of the Ministry of
Education, Taiwan, ROC under the ATU plan.
Appendix. The orthogonal arrays

In this Appendix, we briefly introduce the concept of
orthogonal arrays which are used in experimental design
methods. For more details, the reader may refer to Montgomery
(1991) (Liaw, 2000). Suppose in an experiment, there are k factors
and each factor has q levels. In order to find the best setting of
each factor’s level, qk experiments must be done. Very often, it is
not possible or cost effective to test all qk combinations. It is
desirable to sample a small but representative sample of
combinations for testing. The orthogonal arrays were developed
for this purpose. In an experiment that has k factors and each
factor has q levels, an orthogonal array OA(n, k, q, t) is an array
with n rows and k columns which is a representative sample of n

testing experiments that satisfies the following three conditions.
(1) For the factor in any column, every level occur the same
number of times. (2) For the t factors in any t columns, every
combination of q levels occur the same number of times. (3) The
selected combinations are uniformly distributed over the whole
space of all the possible combinations. In the notation OA(n, k, q,
t), n is the number of experiments, k is the number of factors, q is
the number of levels of each factor and t is called the strength.
Another often used notation for the orthogonal array is Ln(qk). In
this notation t is omitted and is always set to 2. A L8(27)
orthogonal array is shown in Table 7 as an illustrating example.

For an experiment, there are various orthogonal arrays
available. After an orthogonal array is chosen, one may apply
the following criterion to determine the best combinations of
each factor’s level in this experiment. Let Ei be the evaluation
value of the ith experiment in the array. The main effect of factor j

with level k, Fjk is defined as Fjk ¼Sn
i ¼ 1EiAijk, where Aijk is 1 if

factor j’s level is k in the ith experiment and Aijk is 0 otherwise.
After all Fjk had been computed, the level of factor j is chosen to be
l if Fjl ¼max1rkrq Fjk.

References

Aldowaisan, T., Allahverdi, A., 2003. New heuristics for no-wait flowshops to
minimize makespan. Computers and Operations Research 30, 1219–1231.

Bonney, M.C., Gundry, S.W., 1976. Solutions to the constrained flowshop
sequencing problem. Operational Research Quarterly 24, 869–883.

Carlier, J., 1978. Ordonnancements a contraintes disjonctives. RAIRO Recherche
Operationnelle 12, 333–351.
Gonazelez, B., Torres, M., Moreno, J.A., 1995. A hybrid genetic algorithm approach
for the ‘‘no-wait’’ flowshop scheduling problem. In: Proceedings of the First
International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, London, UK, pp. 59–64.

Gupta, J., 1971. A functional heuristic algorithm for the flowshop scheduling
problem. Operational Research Quarterly 22, 39–47.

Grabowski, J., Pempera, J., 2005. Some local search algorithms for no-wait flow-
shop problem with makespan criterion. Computers and Operations Research
32, 2197–2212.

Gonc-alves, J.F., Mendes, J.J.D.M., Resende, M.G.C., 2005. A hybrid genetic algorithm
for the job shop scheduling problem. European Journal of Operational Research
167 (1), 77–95.

Gangadharan, R., Rajendran, C., 1993. Heuristic algorithms for scheduling in the
no-wait flowshop. International Journal of Production Economics 32, 285–290.

Haouari, M., Hidri, L., 2008. On the hybrid flowshop scheduling problem.
International Journal of Production Economics 113, 495–497.

Ho, S.Y., Chen, J.H., 2000. A GA-based systematic reasoning approach for solving
traveling salesman problems using an orthogonal array crossover. In:
Proceedings of the Fourth International IEEE Conference/Exhibition on High
Performance Computing in Asia-Pacific Region, Beijing, China, pp. 659–663.

King, J.R., Spachis, A.S., 1980. Heuristics for flowshop scheduling. International
Journal of Production Research 18, 343–357.

Lin, B.M.T., Lu, C.Y., Shyu, S.J., Tsai, C.Y., 2008. Development of new features of ant
colony optimization for flowshop scheduling. International Journal of Produc-
tion Economics 112, 742–755.

Liu, B., Wang, L., Jin, Y.-H., 2007. An effective hybrid particle swarm optimization
for no-wait flow shop scheduling. International Journal of Advanced
Manufacturing Technology 31, 1001–1011.

Liu, S.Q., Kozan, E., 2009. Scheduling a flow shop with combined buffer conditions.
International Journal of Production Economics 117, 371–380.

Liaw, C.F., 2000. A hybrid genetic algorithm for the open shop scheduling problem.
European Journal of Operational Research 124 (1), 28–42.

Montgomery, D.C., 1991. Design and Analysis of Experiments 3rd ed. Wiley,
New York.

Palmer, D., 1965. Sequencing jobs through a multi-stage process in the minimum
total time—a quick method of obtaining a near optimum. Operations Research
Quarterly 16, 101–107.

Reeves, C.R., 1994. Genetic algorithms and neighborhood search, Evolutionary
Computing. Springer, Berlin pp. 115–130.

Reeves, C.R., 1995. A genetic algorithm for flowshop sequencing. Computers and
Operations Research 22 (1), 5–13.

Park, Y.B., 2001. A hybrid genetic algorithm for the vehicle scheduling problem
with due times and time deadlines. International Journal of Production
Economics 73 (2), 175–188.

Rock, H., 1984. The three-machine no-wait flowshop problem is NP-complete.
Journal of the Association for Computing Machinery 31, 336–345.

Reddi, S.S., Ramamoorthy, C.V., 1972. On the flowshop sequencing problems with
no wait intermediate queues. Operational Research Quarterly 23, 323–331.

Rajendran, C., 1994. A no-wait flowshop scheduling heuristic to minimize
makespan. Journal of the Operational Research Society 45, 472–478.

Schuster, C.J., Framinan, J.M., 2003. Appreciative procedures for no-wait job shop
scheduling. Operations Research Letters 31, 308–318.

Taillard, E., 1990. Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operations Research 47, 65–74.

Tsai, J.T., Liu, T.K., Chou, J.H., 2004. Hybrid Taguchi-genetic algorithm for global
numerical optimization. IEEE Transactions on Evolutionary Computation 8 (4),
365–377.

Valls, V., Ballestin, F., Quintanilla, S., 2008. A hybrid genetic algorithm for the
resource-constrained project scheduling problem. European Journal of Opera-
tional Research 185, 495–508.

Wismer, D.A., 1972. Solution of the flowshop sequencing problem with no
intermediate queues. Operations Research 20, 689–697.

	A hybrid genetic algorithm for no-wait flowshop scheduling problem
	Introduction
	The no-wait flowshop scheduling problem
	The proposed hybrid genetic algorithm
	Representation of chromosome and definition of fitness function
	OA-crossover
	Two local search methods
	Mutation

	Experimental results
	Comparison of two local search methods
	Comparison of primitive GA with hybrid GA
	Comparison with other methods

	Conclusions and future works
	Acknowledgements
	The orthogonal arrays
	References

