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Abstract 

This paper studies overlapping generations economies in which agents use genetic 
algorithms to learn correct decision rules. The results of computer simulations show that 
a genetic algorithm converges to the unique monetary steady state in case of a constant 
money supply policy and to the low-inflation stationary equilibrium in case of a constant 
real deficit financed through seignorage. Features of the genetic algorithm adaptation are 
compared to the performance of other learning algorithms and to the behavior observed 
in experiments with human subjects in the same OLG environments. 
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1. Introduction 

Economic models with incomplete market  structure, where money helps 
to overcome the constraints imposed by limited exchange possibilities, usually 
have a continuum of equilibria. The overlapping generations (OLG) model 
(Samuelson, 1958; Wallace, 1980) of a monetary economy is one such example 
that involves multiplicity of perfect foresight or rational expectations equilibrium 
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paths. Whereas the rational expectations hypothesis does not characterize 
behavior outside equilibrium paths, the hypothesis of adaptive behavior does 
provide guidance on how agents may behave under any observed history. As 
Lucas (1986) has suggested, the stability results obtained through the analysis of 
learning dynamics in these models can be used to single out more likely 
equilibria since these dynamics may be a plausible conjecture about actual 
human behavior. OLG economies with fiat money have already been the subject 
of studies of learning (Lucas, 1986; Marcet and Sargent, 1989, Woodford, 1990; 
Grandmont and Laroque, 1991; Evans and Honkapohja, 1994, 1995; Bullard, 
1994; Duffy, 1994). They have also been simulated in experiments with human 
subjects (Lira, Prescott, and Sunder, 1994; Marimon and Sunder, 1993; 
Marimon, Spear, and Sunder, 1993; Arifovic, 1992). 

This paper studies a two-period OLG model with fiat money in which agents' 
learning is modeled using a genetic algorithm (Holland, 1975). Learning by 
genetic algorithm (GA) is examined in the context of two OLG environments, 
one with the policy of a constant money supply and the other with the policy of 
a constant real deficit financed through seignorage. 

The behavior of GAs and other computer-based adaptive algorithms has been 
studied in a number of different economic models (for example, Miller, 1989; 
Marimon, McGrattan, and Sargent, 1989; Rust, Palmer, and Miller, 1994; 
Arifovic, 1994a, 1994b; Builard and Duffy, 1994). 1 Economic agents' ability to 
learn Nash equilibrium behavior, equilibrium selection, and the usefulness of 
these algorithms in the computation of equilibria are some of the issues exam- 
ined in these studies, Further, the behavior of these algorithms has been 
compared to the behavior observed in laboratory experiments with human 
subjects (Crawford, 1991; Miller and Andreoni, 1990a, 1990b; Arthur, 1991; 
Arifovic, 1992). The results of these studies suggest that computer-based adap- 
tive algorithms can perform better than models with rational economic agents in 
explaining some of the regularities observed in experimental economics. 2 

In economic modeling, GAs describe the evolution of a population of agents' 
decision rules which are represented by chromosomes, strings of finite length, 
written over a binary alphabet {0, 1 }.The performance of each chromosome in 
a given environment is evaluated through its fitness function which measures the 
value of profit or utility resulting from the behavior prescribed by the chromo- 
some. The rules are updated using a set of four genetic operators: reproduction, 
crossover, mutation, and election. Reproduction makes copies of individual 

lArifovic (1994b) studies a two-country OLG model in which agents use the GA to update their 
consumption and portfolio decisions. Bullard and Duffy (1994) examine a sequence of N-period 
OLG environments in which agents use the GA to update their price expectations. 
2Sargent (1993) contains descriptions of several economic models in which GAs were used. 
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chromosomes: chromosomes with higher fitness values have a higher probabil- 
ity of being reproduced. The creation of new rules is accomplished through the 
application of crossover and mutation. Crossover randomly exchanges parts of 
chromosomes, while mutation changes a bit value on a randomly chosen 
position in a binary string. Finally, the election operator tests newly generated 
rules. They are placed in a new population of chromosomes only if their 
performance on past data is better than their parents'. 

GA economies can be viewed as models of decentralized learning. This fact 
allows for the examination of the evolution of heterogeneous beliefs and their 
convergence towards common beliefs. Convergence towards homogeneous be- 
liefs represents, at the same time, the GA economy's convergence to a rational 
expectations equilibrium. Furthermore, the GA imposes a low requirement on 
the computational ability of economic agents. Agents that use GAs for the 
updating of their beliefs do not derive their decision rules from first-order 
conditions of their optimization problem. Yet, the algorithm exhibits relatively 
fast convergence to a rational expectations equilibrium. 

This paper compares the results of an OLG model with GA learning to the 
results of the same model where the agents form expectations via either the 
sample average of past prices or least squares adaptive algorithms. One of the 
objectives of the paper is to examine whether the GA selects the same equilibria 
as do these alternative learning algorithms and whether it is sensitive to the 
conditions which result in the least squares algorithm's divergence. Another 
objective is to compare these algorithms in their ability to capture features of the 
behavior exhibited in experiments with human subjects. 

The OLG economy with a constant supply of money has two stationary 
equilibria, autarky, in which fiat money has no value, and a stationary monetary 
equilibrium, which is unstable under perfect foresight dynamics. The autarkic 
equilibrium is the attractor of all equilibrium price paths with an initial price 
that is greater than the stationary monetary equilibrium price. Under the perfect 
foresight dynamics, the stationary monetary equilibrium is attainable only if the 
initial price is equal to the stationary monetary equilibrium price level. GA 
simulations of this OLG environment converge to the stationary equilibrium in 
which fiat money is valued. This equilibrium is also the point of convergence of 
the adaptive algorithm which uses the sample average of past price levels for the 
price forecasting (Lucas, 1986). Likewise, the experimental OLG economies 
simulated by Lim, Prescott, and Sunder (1994) exhibited price paths close to the 
stationary monetary equilibrium. 

The model with a constant deficit financed via seignorage has two stationary 
equilibria in which money is valued, a low-inflation and a high-inflation station- 
ary equilibrium. The system attains the low-inflation stationary equilibrium 
only if the initial inflation rate is equal to the inflation rate of this stationary 
equilibrium. All perfect foresight paths whose initial inflation rate is greater than 
the low stationary inflation rate converge to the high-inflation, Pareto-inferior 
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stationary equilibrium. These stability conditions imply that an increase in the 
deficit results in a decrease in the inflation rate of a stable stationary equilibrium. 
The least squares learning algorithm (Marcet and Sargent, 1989) converges to 
the low-inflation stationary equilibrium provided the deficit is low enough. 3 The 
GA converges to the low-inflation stationary equilibrium as well. Results of 
simulations show that the GA also converges for deficit values and initial 
conditions for which least squares exhibited divergent behavior. This is impor- 
tant because inflationary paths observed in experiments with human subjects 
conducted by Marimon and Sunder (1993) were close to the low-inflation 
stationary equilibrium. Moreover, the experimental economies did not exhibit 
divergent inflationary paths in cases of deficit values and initial conditions for 
which least squares did not converge. These results were confirmed by Arifovic's 
(1992) laboratory experiments. Based on this evidence, the GA economies 
behave more like the economies with human subjects than the least squares 
economies or the economies in which agents update their beliefs using a sample 
average of past prices. 

The rest of the paper is organized in four sections. The description of the 
OLG model and of the rational expectations equilibrium paths under both 
policies is given in Section 2. The GA and its application to an OLG econo- 
mic environment are presented in the third section, while Section 4 contains 
the results of GA computer simulations. Comparisons to the behavior of 
other learning algorithms and to the features of the experimental OLG econ- 
omies are presented in the fifth section. Concluding remarks are given in 
Section 6. 

2. The economic model 

The economy consists of overlapping generations of two-period-lived 
agents. Each generation consists of an equal number, N, of agents. Every agent 
of generation t lives over two consecutive periods, t and t + 1, and consumes 
c, 1 in the first period (youth) and c 2 in the second period (old age). When young, 
each agent is endowed with w I units of a perishable consumption good, and with 
w 2 units when old (w 1 > w2). The amount of fiat money that government 
supplies at time t is given by Nh,, where h, is the nominal per capita money 
supply. 

3The distinction should be made between the two uses of the term convergence. When considering 
the convergence of the sample average of past prices and the least squares, it is used in an analytical 
sense, while when analyzing the GA, it is used in a computational  sense, i.e., it refers to the 
convergence obtained in computer  simulations. 
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All agents have identical preferences given by U(c~,, c 2) = c ~, c 2. Each young 
individual faces the following maximization problem: 

maxc,~cL 

s.t. m, = ( w  ~ - c ~ ) p , ,  c ~, = w 2 + ( m , / p , + l ) ,  

where m, represents the nominal money balances that an agent acquires in the 
first period and spends in the second period of his life and p, is the nominal price 
level at time period t. The first-order conditions of a young agent's maximization 
problem are simplified to give 

w z + ( m d p , +  x) w 1 - (m, /p , )  

Pt Pt + 1 

In equilibrium, the nominal money demand per capita, m,, must equal nominal 
per capita money supply, h,, in each period. Eq. (1), which describes the behavior 
of the equilibrium nominal price level, is derived from the above first-order 
conditions after substituting ht for mr: 

Pl + 1 = (Wl  / W 2 ) p t  - -  ( 2 / w 2 ) h t  . (1) 

2.1. C o n s t a n t  m o n e y  s u p p l y  

If the government keeps the amount of money constant, h, = h for all t, the 
difference equation (1) has a stationary solution with valued fiat money. In fact, 
it is the unique equilibrium in which a version of the quantity theory of money 
holds. It is given by p, = p* for all t, where 

p* = 2 h / ( w  1 - w2). (2) 

This stationary competitive equilibrium price system exists for w l / w  z > 1. It 
is also Pareto-optimal, with first-period consumption equal to second-period 
consumption (c1"* = cZ'*). Since this equilibrium is unstable, the economy 
attains it only if Po = P*. 

There is also a continuum of monetary equilibria indexed by the initial price 
level Po in the interval (p*, ~ ). All of the equilibria with an initial price greater 
than p* converge to the stationary equilibrium in which money has no value. 
This has led some to suppose that the stationary equilibrium with valued money 
is unlikely to be reached. The results of the learning analysis provide an 
interesting contrast to this view. 

Lucas (1986) studied an infinite-horizon OLG economy with a constant 
money supply in which agents use the sample average of past price levels to form 
expectations about next period's price level. The rule that agents use to update 
their expectations is given by 

t 1 
p;+ l = ~ p ~  + ~ p ,  1, 13) 
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where p~+ ~ is the point expectation formed at t about the price in t + 1. The rule 
defined by Eq. (3) is equivalent to 

1 
P~+I = 7z-7  [P, + "" + Po]. (4) 

t + l  

Given some p~ > p*, the system with this adaptive scheme converges to the 
stationary monetary equilibrium. 

2.2. C o n s t a n t  de f ic i t  f i n a n c e d  th rough  s e i g n o r a g e  

If the government follows a policy of financing the constant real per capita 
deficit, d, through seignorage, the monetary rule that would implement this 
policy is given by 

d = (h, - h ,_  ~)/p,. (5) 

Thus the money supply in period t, h, units per head, is no longer constant. As 
a result, we have 

h, = h~_ 1 + dp,. (6) 

From the first-order conditions of the consumer maximization problem, 
nominal money balances that an agent of generation t carries from time t to time 
period t + 1 are given by 

mt = ½p,(w 1 - rot+ lW2), (7) 

where rot + ~ = Pt + ~/P, is the inflation rate between period t and t + 1. Thus, using 
Eqs. (5) and (7), and the equilibrium condition that m, = h,, the deficit d is given 
by 

d = (wl/2) - n,+ 1(w2/2) - (wl/2rt,) + (w2/2). (8) 

Rearranging (8), the paths of equilibrium inflation rates under perfect fore- 
sight dynamics are 

rr,+ 1 = (w l  / w  2) + 1 - ( 2 d / w  z) - (wl  /w2) (1 / r t t ) .  (9) 

Provided that the deficit satisfies d < dmax = (w2/2)[1 + ( w l / w  z) - 2 (w1/wZ) l /2] ,  

Eq. (9) has two real stationary solutions, a low-inflation stationary equilibrium, 
re*, and a high-inflation stationary equilibrium, ~*, given by 

( w '  / w  2) + 1 - ( 2 d / w  2) +_ x / ( ( w l  / w  2) + 1 - ( 2d /w2) )  2 - 4 (w l  / w  2) 
rc~'z = 2 

The high-inflation stationary equilibrium is the stable solution, being the 
attractor for a continuum of rational expectations equilibrium paths, starting 
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from no ~ (n*, W1/W2). For the value of no equal t o  WI/W 2, zero money balances 
are demanded. If the initial inflation rate no is equal to n*, the system attains 
a low-inflation stationary equilibrium. In a stationary equilibrium, the ratio 
between first- and second-period consumption is equal to the stationary infla- 
tion rate. The low-inflation stationary equilibrium is Pareto-superior to the 
high-inflation one. 

Marcet and Sargent (1989) analyze a least squares learning scheme in the 
context of this model. If agents learn about the price level using the least squares 
algorithm, their expectation of the price in t + 1 is 

p~'+, =/~,p,, (10) 

where/3, is the estimate of the inflation rate obtained through the regression on 
past values of prices: 

[~t = 2 P~Ps- 1 " (111 
s L s  = 1 

Marcet and Sargent show that under least squares learning the model either 
converges to the low-inflation stationary equilibrium or no equilibrium exists. ~ 
Note that under the rational expectations hypothesis the stable stationary 
equilibrium is a high-inflation one. This result of least squares learning is also 
classical in the sense that a higher deficit is associated with a higher stable 
stationary inflation rate. Under the rational expectations, an increase in the 
deficit results in a lower stationary inflation rate. Further, for some cases of high 
deficit for which there exists an equilibrium under the rational expectations 
hypothesis, there is no equilibrium under least squares learning. 

3. Genetic algorithm application 

At each integer point in time t > 1, there are two populations of chromo- 
somes, one being the new population of generation t, the young, the other being 
the population of generation t - 1, the old. A population of generation t, A(t),  

consists of N chromosomes Ai.,, i e [1 . . . . .  N], which represent decision rules 
about first-period consumption for N agents. A c h r o m o s o m e  is a string of finite 
length (, written over the binary alphabet {0, 1 }. 

Decoding and normalization of a chromosome yields a real number that 
represents the value of first-period consumption. For a chromosome i of length 

4With an alternative preference map, it can happen that the system under least squares would 
converge to a periodic equilibrium. See Bullard (1994). 
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: the decoding works in the following way: 
/ 

Xi, t = ~ ak, t 2  k - l ,  
k = l  

where ak,.t is the value (0, 1) taken at the kth position in the ith string. After 
decoding, the integer xi., is normalized in order to obtain a value of the 
first-period consumption c "~,.f, c ll,c • I'0, w 1] of agent i of generation t. Thus, 

c~,., = x i . , / I ( ,  (12) 

where K" is a coefficient chosen to normalize the value of x i . , .  Once c~., is 
determined, savings of a chromosome i of generation t, si.,, are given as 

si., = w 1 - cti., (13) 

The price of the consumption good at time t is then given by 

p, = N h  si., .  (14) 
i 

The nominal price pz and individual savings s~., are used to compute nominal 
money balances, m~.t, that agent i (i • [1, N]) of generation t carries from period 
t to period t + 1, 

mi, t - :  ptsi,  t. (15)  

At time t + 1, the second-period consumption of member i ( i •  [1, N]) of 
generation t is determined as 

ci2., = (mi . , /p t+ 1) + w2. (16) 

The fitness of a chromosome i of generation t is given by the value of agent i's 
utility at the end of period t + 1 (the second period of life): 

~i. t  Ui(C:ot, C2i, t) 1 2 = .~_ Ci, tCi, t . 

Beliefs about first-period consumption of members of generation t are updated 
using four operators: reproduction, crossover, mutation, and election. The 
population of updated rules is then used by members of generation t + 2. 

R e p r o d u c t i o n  makes copies of individual strings. The probability that a string 
will be copied is proportional to its fitness value. Thus a probability that a string 
Ai ,  t will get a copy Ci. ,  is given by 

P ( C i , , )  = lai,, Ill, t, i • [1, N]. 
/ i =  1 

Reproduction operates like a biased roulette wheel. Each string is allocated 
a slot sized in proportion to its fitness. The number of spins of the wheel is equal 
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to the number of chromosomes in a population and each spin yields a reproduc- 
tion candidate. When a chromosome is selected, its exact copy is made. Once 
N copies are made (the number of strings in a population is kept constant), they 
enter into a mating pool to undergo application of other genetic operators. 

Crossover operates on members of the mating pool. First, two strings are 
selected from the mating pool at random. Then, an integer number k is selected 
from (1 . . . . .  f - 1) again at random. Two new strings are formed by swapping 
the set of values to the right of the position k. The total number of pairs that is 
selected is N/2 (where N is an even integer). Crossover takes place on each pair 
with probability pcross. An example of the crossover between two chromosomes 
for f = 8 and k = 4 is given below: 

{10 1 0 0 ' 1  0 1 0 
0 0 l l O  1 0 1 

After the application of crossover, two resulting strings are 

{10 1 0 0 0 1 0 1 
0 0 1 1 0 1 0 

Mutation randomly changes the value of a position within a string. The value 
at each position within a string is exposed to a chance of being altered to the 
other value taken by the binary alphabet. The probability of mutation, pmut, is 
independent and identical across positions. 

The election operator (Arifovic, 1991, 1994a) s tests newly generated offspring 
before they are allowed to enter into a new population of generation t + 2. The 
string value of each new offspring is decoded in order to obtain the value of 
first-period consumption that an offspring would represent were it used as an 
actual decision rule. Utility associated with that decision rule is computed using 
the inflation rate of period t. The utility obtained in this manner represents the 
offspring's potential fitness value. This potential fitness of an offspring is com- 
pared to the actual fitness values of its parents (i.e., the fitness values of the two 
parent strings that were evaluated at the end of period t). If potential fitness is 
higher than the fitness of one or both of parents, then the offspring enters into 
the population of a new generation. The possible results of the election operator 
test are the following: If only one offspring (out of two offspring for each parent's 
pair) has a fitness higher than both of its parents, it replaces the parent with 
a lower fitness while the parent with a higher fitness remains in the population. 
In the case that both offspring have fitnesses higher than a fitness value of each 

Sl developed the election operator in my dissertation at the University of Chicago. It is a form of an 
elitist selection procedure which reduces the effects of the mutation operator over the course of 
a simulation. For more detail, see Arifovic (1991, 1994a). 
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parent, they replace both parents as new members of the population. If both 
parents have fitnesses higher than their offspring, they remain in the population 
of the new generation, while their offspring do not enter. 

A population of chromosomes that will represent decision rules of young 
agents at t + 2 is generated in the following way: First, the application of the 
reproduction operator to the population of rules of generation t yields a popula- 
tion of N copies. Then, crossover and mutation operators are applied to this 
population in order to generate new ideas to be tried. Finally, newly generated 
chromosomes are subjected to the election operator test. Offspring that pass the 
test, together with parents that are more fit than their offspring, form a new 
population of decision rules of agents born at time period t + 2. 

Once the members of the new population are determined, the values for 
first-period consumption, c],, + 2, and savings, si . ,+ z, for each agent of generation 
t + 2 are computed. Aggregate savings, Y~=I si., + z, together with the aggregate 
nominal money supply N h  (which is equal to the money holdings of agents of 
generation t + 1, )~/u= 1 m~.,+ ~), determine the price level of the good that prevails 
at t + 2. The price of the consumption good at time t + 2 is thus given by 

Pt+ 2 = N h  s i . t+ 2 . (17) 
i 

Then the second-period consumption of member i (i ~ [1,N]) of generation 
t + 1 is determined: 

c 2 , , ,+ 1 = ( m i . , +  1/P,+2) + w2. (18) 

Finally, fitness values of the members of generation t + 1 are computed. The 
population for generation t + 3 is generated from the population of generation 
t + 1, using the genetic operators reproduction, crossover, mutation, and 
election. 

The populations of chromosomes that belong to members of generations 
0 and 1 are randomly generated. The system starts off with N h  units of money 
distributed to the initially old. 

The algorithm applied in the case of the OLG model with constant real deficit 
is identical to the one used in the model with constant money supply, except for 
the way in which a price is computed in each time period t. Since government 
finances a constant deficit per head, d, the price in period t is given by 

Pt : Z S i ,  t - l P t - 1  Si. t - -  N d  , (19) 
i 

N S for Z~ i.t-~ > N d .  (Note that there is nothing in the algorithm to ensure 
aggregate savings greater than government total deficit in every time period. 
Aggregate savings less than N d  is interpreted as a breakdown of the GA 
monetary economy.) 
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This GA economy allows for the possibility of savings, but does not give 
agents a market in which to borrow. There is only a money market with no 
credit market or storage technology in the model. This GA design closely 
corresponds to the design of the experimental OLG economies and to the 
environments in which the behavior of sample average of past prices and least 
squares learning algorithms were examined. The GA design with a credit market 
would have prevented the comparison of the GA behavior generated by the two 
above-mentioned algorithms as well as with the behavior observed in the 
experiments. 6 

4. Results of simulations 

GA simulations for both OLG models, with constant money supply and with 
constant real deficit, were conducted using populations of thirty strings, with 
a string length of thirty bits. Initial populations were randomly generated. Each 
simulation was conducted for 400 periods. For every set of OLG parameter 
values, simulations with eight different sets of genetic operator rates were 
conducted in order to examine how these rates affect the GA's behavior. These 
sets of values are given in Table 1. In addition, every combination of OLG 
parameter values and genetic operator values was examined using multiple runs 
with different seed values for the random number generator to ensure the 
robustness of results to different random number sequences. 

4.1. Constant money supply 

The results of the computer simulations of GA OLG economies with constant 
money supply show convergence towards the stationary monetary equilibrium 
(the same equilibrium to which the Lucas' adaptive scheme converges). 
The OLG parameter values and the corresponding stationary values of 
the price level and the first- and second-period consumption values are given in 
Table 2. 

For all sets of OLG parameter values, the fastest convergence was achieved 
with the second set of genetic operator rates, The price series generated using the 
GA is shown in Fig. 1. 

~A more general GA design which would include a credit market is worth examining in the OLG 
environments in which a fraction of agents has their endowment pattern with w ~ < w z. This would 
make it worthwhile for these agents to learn to borrow the utility maximizing amount in the first 
period of their lives. On the other hand, if w 1 > w 2 for all agents, the rules that instruct agents to 
borrow would result in the relatively low levels of utility and would, over time, disappear from the 
population through the workings of the reproduction operator. 
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Table 1 
Crossover and mutat ion rates for genetic algorithm 

Set 1 2 3 4 

pcross 0.6 0.6 0.75 0.75 
pmut 0.0033 0.033 0.033 0.0033 

Set 5 6 7 8 

pcross 0.9 0.9 0.3 0.3 
pmut 0.0033 0.33 0.033 0.33 

Table 2 
Overlapping generations model with constant money supply 

Model 1 2 3 4 

w = 150 120 I00 7 
w 2 10 20 90 1 
h/N I000 500 1000 100 
p* 14.286 10 200 33.3 
c 1'* 80 70 95 4 

38 

37- 

36- 

35- 

~, 34- 
.o 

o. 33- 

32- 

31- 

30- 

29'  
0 

eq.  price 
. . . . . . .  ;~;~::;:;'.;:,y,, ,', ', ', .~ .  ,', ';';~;t;~.-~.t;:; :':',',', ',', ', ;t:~',~ ',~:~ X ~ :  :', ', ',~ 

~0 ~0 8b do lb0 1~0 140 
period 

Fig. 1. GA O L G  economy with constant  money supply; GA price; set 4 of OLG parameter  values; 
set 2 of genetic rates values. 

Beliefs about the amount that should be consumed in the first period in both 
populations converge to the stationary value, c 1'*. Thus, once the algorithm 
converges, the members of both populations make decisions about how much to 
consume in the first period as if they had learned to maximize their utility 
functions and make the correct price prediction. 
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4.2. Constant deficit 

GA simulations of constant deficit OLG model were conducted for thirteen 
different sets of OLG model parameter values (endowment patterns and values 
of deficit). Values from these simulations, together with the values of rational 
expectations stationary equilibria inflation rates (Tt~' and ~*) and the corre- 
sponding stationary values of first- and second-period consumption (c~'* and 
c2~ '* associated with it* and c~* and c~* associated with ~ )  are given in Table 3. 

The GA OLG economies converged to the equilibrium with the low station- 
ary inflation rate for all sets of OLG parameter values and all sets of genetic rate 

Table 3 

Overlapping generations model with constant real deficit 

Set 1 2 3 4 

w I 100 10 150 10 

w 2 90 2 30 9 

d 0.02 0.001 15 0.0007695 

* 1.0041 1.00025 1,382 1.00156 

* 1.1065 4.99987 3,618 1.10938 g2 
el'* 95.1878 6.00025 95.7295 9.50702 

c~'* 99.7922 9.99875 129.2705 9.9922 

Set 5 6 7 8 

w I 2 2 2 2 

w 2 1.8 1.8 1.8 1,8 

d 0.0019 0.00234 0.0024 0.00263 

rt* 1.026 1.0357 1.0377 1.052 

rc~ 1.0838 1.0728 1.0707 1.056 

el'* 1.9227 1.9321 1.9339 1.9469 

c~'* 1.9754 1.9655 1.9637 1.9505 

Set 9 10 11 12 13 

w t 10 10 10 10 10 

w ~ 4 4 4 I 1 

d 0.001 0.5 0.67544 0.001 1.5 

n~ 1.00033 1.25 1.57922 1.00022 1.55051 

n~ 2.49917 2,00 1.58306 9.99778 6.44949 

el'* 7.00067 7.5 8.15843 5.50011 5.77526 

c~'* 9.9983 9.00 8.16613 9.99889 8.22474 
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Fig. 2. GA O L G  economy with constant  deficit - GA inflation rate and consumption ratio; set 1 of 
O L G  parameter values; set 2 of genetic rates values. 
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Fig. 3. GA O L G  economy with constant  real deficit - GA first period consumption; set 4 of OLG 
parameter  values; set 2 of genetic rates values. 

values for which the simulations were conducted. Again, set 2 of genetic rate 
values resulted in the fastest convergence of GA for all sets O LG  model 
parameter values. 

Fig. 2 exhibits the behavior of the average ratio between first- and 
second-period consumption and the inflation rate. Both of these variables 
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fluctuate at the beginning of a simulation, while after period 50 fluctuations start 
to wear off as both variables approach and, at the end, converge to the common 
value equal to the low stationary inflation rate. 

The evolution of the beliefs about  first-period consumption is presented in 
Fig. 3. Beliefs in odd time periods are the beliefs of population 1, while those in 
even periods are the beliefs of population 2. Both populations show a great 
extent of diversity of decision rules at the beginning of the simulation. The 
diversity starts to decrease after period 40, as rules that have proven more 
successful in the environment up to that point begin to make up an increasing 
fraction of both populations via the application of the reproduction operator. 
Around simulation period 100, the beliefs of both populations converge to 
a single value, which is equal to the value of the first-period consumption in the 
rational expectations low-inflation stationary equilibrium. Beliefs of both popu- 
lations, given as binary strings and as decoded real number values are given in 
the Appendix. 

GA simulations in which the election operator  is not included do not result in 
the algorithm's convergence. This simple GA (Goldberg, 1989) supports con- 
siderable population diversity until the end of simulations (3000 periods with no 
sign of convergence) due to the continuing effects of mutation. The election 
operator is used in this environment to offset these effects of mutation on 
population diversity. 7 

4.3, Comparison with least squares learning 

In the computer  simulations of their model, Marcet and Sargent obtained 
examples in which the least squares beliefs, {/3,}, failed to converge. These 
examples were generated using values of deficit very close to the maximum value 
attainable under perfect foresight dynamics and (or) using low values of initial 
belief, 13o. The objective of this section is to examine the behavior of the GA 
under the conditions which resulted in the divergent behavior of the least 
squares algorithm. 

The failure of convergence of the least squares beliefs, {/3t }, to rt]' is more likely 
to happen when n~ is sufficiently close to 7z*. The stationary inflation rates, 
n* and 7t*, approach the common value (WI/w2) 1/2 a s  the deficit, d, approaches 
from below the maximal feasible value of d,,ax. The divergence of least squares 

Tit should be noted that election operator does not require any additional information that is not 
already used by GA agents. Application of this operator on population of generation t requires 
information about the inflation rate of period t - 1, which is used by GA agents in computation of 
their utilities at the end of t - 1, i.e., in computation of fitness values of their decision rules. The 
election operator also does not impede the ability for adjustment of the GA in environments in 
which parameters of the economic model change. For detailed discussion of the impact of election 
operator on GA performance see Arifovic (1991, 1994aj. 
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may also occur if the initial beliefflo is sufficiently smaller than n* (when {fit} is 
approaching n* from below). 

The values of the first- and second-period endowment that Marcet and 
Sargent used in their computer simulations were w x = 2 and w 2 = 1.8. For  these 
parameter values, the maximum value of deficit sustainable under rational 
expectations is dma~ = 0.00263 (set 8 in Table 3). Three different values of deficit 
were tested, d = 0.0019 (set 5 in Table 3), d = 0.00234 (set 6 in Table 3), and 
d = 0.0024 (set 7 in Table 3), combined with different values of initial beliefs. The 
results of the least squares simulations were the following: 

(a) For  the relatively low value of deficit, d = 0.0019, {/3,} exhibited fast conver- 
gence to n*, even though the initial belief was set to 1.00, a value that is small 
compared to the value of n* (1.026). 

(b) When the value of deficit was increased to d = 0.00234, the least squares 
algorithm diverged away for the same value of initial belief, /30 = 1.00. 
Decreasing the difference between flo and n* (1.0357), by setting/30 --- 1.02, 
resulted in the convergence of the algorithm for the same value of deficit. 

(c) Further increase in the value of deficit to d = 0.0024 resulted in the diver- 
gence of {fl,} for the values of initial beliefs fl0 = 1.00, flo = 1.02, and 
flo = 1.0376. Even a value of/30 extremely close to n* (1.0377) could not 
prevent divergence of {/3,}. 8 

While least squares agents update their beliefs about next period's inflation 
rate, GA agents update their beliefs about the value of their first-period con- 
sumption. Moreover, at generation 0, beliefs of GA agents differ across the 
population, while beliefs of least squares agents are unanimous for all t. These 
differences exclude the possibility of simply setting the value of initial belief flo in 
GA simulations equal to the value offlo used in the least squares simulations. To 
start the GA simulation with the initial conditions that would correspond to 
Marcet and Sargent conditions, the GA was adjusted in the following way: 
Given B0, the level of the first-period consumption of young agents at generation 
0 was calculated from the first-order conditions of utility maximization. This 
value was taken as the average consumption of young GA agents at generation 
0. The individual beliefs of the young at generation 0 about their first-period 
consumption were then diversified around this average value. 

Thus adjusted, the GA population converged to the low-inflation stationary 
equilibrium for all three cases, (a), (b), and (c). In all of these simulations, the 
algorithm starts out with relatively large fluctuations around n* which subside 

8See Bullard (1994) for a detailed analysis of the Hopf bifurcation underlying these least squares 
results. 
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around period 200. The diverging path of the inflation rate generated by the 
least squares algorithm for d = 0.0024 is given in Fig. 4. The converging path of 
the GA inflation rate for the same value of deficit is presented in Fig. 5. These 
results indicate that the stability conditions for the convergence of GA econ- 
omies and for the convergence of least squares learning in this O LG  model are 
different. 
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5. Genetic algorithm and the experimental evidence 

Lim, Prescott, and Sunder (1994) conducted experiments with human subjects 
of O L G  economies with a constant money supply as described in Section 2. Their 
basic result is that trading patterns and prices converged to the Pareto-optimal 
rational expectations equilibrium of constant consumption (prices show an 
upward bias that may be explained as an outcome of imperfect competition). 
Exploding paths of prices that result in an autarkic solution where money has 
no value were not observed in any of these experimental economies. 

In experiments with human subjects, Marimon and Sunder (1993) simulated 
O L G  economies where government finances a fixed real deficit through 
seignorage. The structure of the economies and the level of deficits were 
common knowledge and participants also observed past prices. The results 
show that experimental inflationary paths lie close to the low-inflation 
stationary equilibrium. Comparing rational expectations nonstationary 
paths and least squares nonstationary paths with experimental inflation 
paths, Marimon and Sunder conclude that least squares nonstationary paths 
have much better explanatory power than rational expectations non- 
stationary paths. However, least squares paths are smoother than the observed 
experimental paths. 

In addition, when experimental economies start with initial inflation rates and 
deficit values for which the least squares learning algorithm does not converge 
to the low-inflation stationary equilibrium, inflation patterns in these experi- 
mental economies do not follow diverging paths, but rather paths that converge to 
the neighborhood of the low-inflation stationary equilibrium. 9 The GA generates 
inflation patterns that fluctuate more than least squares patterns and thus it 
captures better this feature of the experimental data. Furthermore, the GA 
converges for deficit values and initial conditions for which least squares do not 
and thus it explains better the same behavior observed in the O L G  experiments. 

Arifovic (1992) conducted the same type of O L G  experiments with human 
subjects as Marimon and Sunder. Five different sets of endowment patterns and 
deficit values were used. These values are given in Table 3 (sets 9 through 13). 
Observations from these experiments confirm that the experimental inflation rate 

9The fact that both adaptive algorithms and human subjects in the OLG environments considered in 
this paper select Pareto-superior stationary outcomes should not be interpreted to argue that this 
holds in general. There are results in the learning literature as well as in the experimental work that 
show that this need not be the case, For example, Woodford (1990) and Evans and H onkapohja (1994, 
1995) derive the conditions for the convergence of learning dynamics to sunspot equilibria in OLG 
environments. Duffy (1994) provides an example of a learning process that converges to Pareto- 
inferior stationary equilibria of OLG economies. In the laboratory experiments of coordination games, 
Van Huyck, Battalio, and Bell (1990, 1991) show that experimental economies can select Pareto- 
inferior equilibria. 
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is close to the low stationary inflation rate and the experimental inflationary paths 
do not diverge away for the values that are critical for the least squares paths. 

Observed experimental inflation rates for set 9 of the OLG parameter values 
are presented in Fig. 6. It is clear that the experimental inflation rate fluctuates 
around the low stationary inflation rate value. Least squares inflation rates for 
the same set of OLG parameter values are given in Fig. 7. Least squares learning 
exhibits smooth convergence to rt~', without the fluctuations that characterize 
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experiments. In contrast, the observed GA inflation rate fluctuates prior to 
its convergence to the low-inflation stationary equilibrium and thus captures 
this feature of the experimental data. Fig. 8 presents the behavior of GA 
inflation rates for set 9 of the OLG parameter values and set 6 of the genetic 
rates values. 

Fig. 9 shows the behavior of the inflation rate in the experimental economy in 
which the OLG parameters of set 1 ! were used. For these parameter values, 
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Fig. 8. OLG economy with constant real deficit - GA inflation rate; set 9 of OLG parameter 
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least squares learning leads to divergent behavior of the inflation rate (Fig. 10). 
Although the extent to which the inflation rate fluctuates in this experimental 
economy is greater than in the others that were conducted for lower values of 
deficit, it does not exhibit a diverging pattern. The genetic algorithm does not 
diverge away for this set of OLG values either. Its fluctuating, but not diverging, 
inflation pattern for set 11 of OLG parameter values and set 7 of genetic rates 
values is given in Fig. 11. 
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6. Conclusion 

The goal of this paper was to examine the behavior of GA OLG economies 
with fiat money in computer simulations and to compare the results to those 
generated by other learning algorithms in the same environments as well as to 
the observations from experiments with human subjects. Two types of policy 
rules were considered, one with a constant money supply and the other with 
a constant real deficit financed through seignorage. 

In the constant money supply environment, OLG GA simulations resulted in 
convergence to the unique stationary monetary equilibrium with a constant 
price level. This is consistent with results obtained in the study of the adaptive 
scheme which uses the sample average of past price levels for price forecasting, 
as well as results from experiments with human subjects. 

In the case of a constant deficit financed through seignorage, the GA con- 
verged to the low-inflation stationary equilibrium, the equilibrium which is 
unstable under perfect foresight dynamics, but locally stable under least squares 
learning for low values of the deficit. The inflation rates observed in the 
experiments with human subjects converged to the low-inflation stationary 
equilibrium as well. Computer simulations suggest that the GA is not sensitive 
to the initial conditions and values of deficit which cause the divergent behavior 
of the least squares algorithm. Further, the GA performs better in capturing 
fluctuations of the inflation rate recorded in the experimental economies. 

Appendix 

Table 4 
GA population report, period 500 

String First-period consumption 

Population of old ayents rules 

2) 
3~ 
4) 
5) 
6) 
7) 
8) 
9) 

10) 
I1) 
12) 
13) 

1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0  

0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  

1-001110 
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  
0 0 1 1 1 0  

9,51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
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Table 4 {continued) 

String First-period consumption 

14) I I 1 1 0 0 1  
15) I I 1 1 0 0 1  
16) 1 1 1 1 0 0 1  
17) 1 1 1 1 0 0 1  
18) 1 1 1 1 0 0 1  
19) I I 1 1 0 0 1  
20) 1 1 1 1 0 0 1  
21) 1 1 1 1 0 0 1  
22) 1 1 1 1 0 0 1  
23) 1 1 1 1 0 0 1  
24) 1 1 1 1 0 0 1  
25) I 1 1 1 0 0 1  
26) I I 1 1 0 0 1  
27) 1 1 1 1 0 0 1  
28) 1 1 1 1 0 0 1  
29) I I 1 1 0 0 1  
30) 1 1 1 1 0 0 1  

I0  1 0 0 0 0 1 0 1 0 0 1  
10 1 0 0 0 0 1 0 1 0 0 1  
10 1 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0  001 
10 0 0 0 0 1 0  001 
10 0 0 0 0 1 0  001 
I0  0 0 0 0 1 0  001 
I0  0 0 0 0 1 0  001 
10 0 0 0 0 1 0  001 
10 0 0 0 0 1 0  001 
10 0 0 0 0 1 0  001 
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  

O0 1101 
O0 1101 
O0 1101 
O0 1101 
O0 1101 
O0 I | 0 1  
O0 1101 
O0 1101 
O0 1101 
O0 1101 
O0 1101 
O0 I101  
O0 1101 
O0 1101 
O0 1101 
O0 1101 
O0 1101 

9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 

Population of young agents rule 

2) 
3) 
4~ 
5) 
6) 
7) 
8) 
9~ 

10) 
11) 
121 
131 
141 
15) 
16) 
17j 
18) 
19) 
20) 
21j 
22j 
23) 
24j 
25) 
26) 
271 
28) 
29j 
301 

1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
I I 1 0 0 1  
1 1 1 0 0 1  
I I 1 0 0 1  
I I 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
I 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
I I 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0  
1 t 1 0 0  
1 1 1 0 0 1  
1 1 1 0 0 1  
I I 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  
1 1 1 0 0 1  

11001  
I I 1 0 0 1  

10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
I0  0 0 0 0 1 0 1 0 0 1  

I 1 0  0 0 0 0 1 0 1 0 0 1  
I 1 0  0 0 0 0 1 0 1 0 0 1  

10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  
10 0 0 0 0 1 0 1 0 0 1  

001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 
001 

OI 
Ol 
O1 
O1 
O1 
Ol 
O1 
Ol 
O1 
O1 
OI 
O1 
O1 
OI 
OI 
O1 
O1 
O1 
O1 
O1 
O1 
Ol 
O1 
O1 
OI 
O1 
OI 
O1 
OI 
O1 

9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9,51 
9.51 
9.51 
9.51 
9.51 
9.51 
9,51 
9,51 
9,51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
9.51 
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