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Facility layout problems (FLP) involve determining the optimal placement of machines within a fixed
space. An effective layout minimises costs. The total material travel distance is a key indicator of the
efficiency of internal logistics. Changes in demand and product mix may alter the material flow. The
dynamic facilities layout problem (DFLP) takes into account changes in demand and allows for the
periodic redesign of facilities. Facility redesign may reduce the material flow cost, but there is a trade-off
between material flow improvements and reorganisation costs. There is a limited literature on the re-
design of facilities with stochastic demand, heterogeneous-sized resources and rectilinear material flow.

The Backtracking Search Algorithm (BSA) has been used to successfully solve a range of engineering
problems, but it has not previously been used to solve operations management problems or the FLP. This
paper outlines novel modified Backtracking Search Algorithms (mBSAs) that solved the stochastic DFLP
with heterogeneous sized resources. The combination of material flow and redesign costs were mini-
mised. Three mBSA were benchmarked against the classical BSA and a Genetic Algorithm (GA) using 11
benchmark datasets obtained from the literature. The best mBSA generated better solutions than the GA
for large-size problems. The total costs for the layouts generated by the best mBSA were significantly
lower than for the conventional BSA. The modifications to the BSA increased the diversity of candidate
solutions, which increased the amount of exploration. The computational time required by the three
mBSAs was up to 70% less than the GA.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

An effective facility layout design reduces manufacturing lead
times and increases throughput, overall productivity and efficiency
(El-Baz, 2004). The facilities layout problem (FLP) has been defined
as “arranging m indivisible departments (each with area ai) within
a given space” (Bozer and Meller, 1997, p. 549). The total distance
travelled by materials is a commonly used proxy for measuring the
efficiency of layouts, indeed much of the research on the optimi-
sation of layout has sought to minimise some function related to
the travel of parts (Drira et al., 2007). The facilities layout problem
may be classified as a non-deterministic polynomial time hard
problem (Ertay et al., 2006; Pourvaziri and Naderi, 2014) which
means that the computational time required to solve problems
increases exponentially with problem size. Stochastic search
mail.com (P. Pongcharoen).
algorithms tend to be most suitable for solving such problems
(Nagar et al., 1995). The problems has been solved using Genetic
Algorithms (Tam, 1992; Tate and Smith, 1993; Mavridou and Par-
dalos, 1997; Hicks, 2004), Simulated Annealing (Moslemipour and
Lee, 2012), Ant Colony Optimisation (Corry and Kozan, 2004; Lu-
tuksin and Pongcharoen, 2010; Thepphakorn et al., 2014), Bat Al-
gorithm (Dapa et al., 2012), and Biologically-Based Optimisation
(Sooncharoen et al., 2015).

Uncertainty in demand may arise due to the actions of com-
petitors, changing consumer preferences, technological innova-
tions, new regulations, unanticipated model changeovers and
variable production schedules (Sethi and Sethi, 1990; Chan and
Malmborg, 2010). Dynamic facility layout problems (DFLP) take
into account anticipated changes in material flow over multiple
periods (weeks, months, or years). The layout may be redesigned
for each period to minimise costs (Drira et al., 2007). However,
redesign costs arise that include labour, equipment and lost pro-
duction (McKendall et al., 2006; Moslemipour and Lee, 2012).
Therefore the layout is only changed if the reduction in material
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Fig. 1. Example of multiple-row machine layout design (modified from Leechai
et al. (2009)).
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flow costs exceeds the redesign cost. The DFLP has been solved
using various approaches including: the Quadratic Assignment
Problem (Yang and Brett, 1998), Genetic Algorithms (Mazinani
et al., 2013), Simulated Annealing (Kia et al., 2013) and Tabu Search
(Chang et al., 2013).

A literature search that used the ISI Web of Science database for
the period 2001–2014 found that Genetic Algorithms (GA) were
the most popular algorithm used for solving the FLP. However, it
has been reported that evolutionary algorithms can be sensitive to
control parameters and suffer from slow computation and pre-
mature convergence (Civicioglu, 2013).

The Backtracking Search Algorithm (BSA) is a new evolutionary
algorithm that was designed to be relatively simple with a single
control parameter (Civicioglu, 2013). It can quickly solve numerical
optimisation problems to produce good solutions. The BSA in-
cludes search within the current and previous populations. The
BSA uses three genetic operators: selection, mutation and cross-
over. It has a random mutation strategy that is applied to a single
individual (chromosome) and a non-uniform crossover strategy. It
generates trial populations and controls the amplitude of the
search-direction matrix and search-space boundaries to give
powerful exploration and exploitation capacities. It was claimed
that it can solve benchmark problems for: numerical function
optimisation (Karaboga and Basturk, 2007), real-parameter opti-
misation (Suganthan et al., 2005), and real world optimisation
(Das and Suganthan, 2010) more successfully than six other evo-
lutionary algorithms (Civicioglu, 2013). These included the fol-
lowing: the Adaptive Differential Evolution Algorithm (ADEA)
(Brest et al., 2006); the Artificial Bee Colony (Karaboga and Bas-
turk, 2007); the Comprehensive Learning Particle Swarm Opti-
miser (CLPSO) (Liang et al., 2006); the Covariance Matrix Adap-
tation Evolutionary Strategy (CMAES) (Igel et al., 2007); Particle
Swarm Optimisation (Kennedy and Eberhart, 1995); and the self-
adaptive differential evolution algorithm (SADE) (Qin and Su-
ganthan, 2005). The BSA has been used to successfully solve sev-
eral engineering problems, including: power system optimisation
(Kılıç, 2014; Rezaee Jordehi, 2015), the economic dispatch problem
(Modiri-Delshad and Abd Rahim, 2014), non-aligned thrust opti-
misation (Kolawole and Duan, 2014), the localisation problem (De
Sá et al., 2014), constrained optimisation problems (Zhao et al.,
2014) and nonlinear engineering optimisation problems (Song
et al., 2015). The BSA has not previously been used to solve op-
erations management or facilities layout problems.

The aim of the research on which this paper is based, was to
design, implement and evaluate a tool for solving stochastic dy-
namic facility layout problems that included the Backtracking
Search Algorithm, a Genetic Algorithm, and three modified BSAs.
The performance objective was to minimise the total cost which
comprised material flow and redesign costs.

The paper is organised as follows. The literature relating to
facilities layout problems with demand uncertainty, the Genetic
Algorithm and the Backtracking Search Algorithm is reviewed in
Sections 2, 3, and 4 respectively. Section 5 describes the problem
formulation. Section 6 outlines the development of the Genetic
Algorithm, the Backtracking Search Algorithm and modified BSAs
that were used for solving facilities layout problems. The compu-
tational experiments are presented in Section 7. Section 8 includes
discussion and conclusions and highlights the contributions of the
work.
2. Facilities layout problem

Azadivar and Wang (2000, p. 4369) defined the facility layout
problem (FLP) as “the determination of the relative locations for,
and the allocation of, the available space among a number of
workstations”. The overall facility layout procedure comprises two
phases: (1) the block layout phase that specifies the relative lo-
cation and size of each department; and (2) the detailed layout
phase which determines the exact locations, aisle structures, en-
try/exit points locations and the layout within each department
(Drira et al., 2007). Block layouts normally represent resources as
rectangles (Askin and Standridge, 1993). Some methods for solving
block layout problems use a grid, whereas others consider a con-
tinuous plane where the blocks can be positioned at any point (Lee
and Kim, 2000). Block layout methods may consider equally
spaced blocks or the size of the blocks may vary (Castillo et al.,
2005).

A typical block layout with rectangular shaped resources of
varying sizes, arranged in multiple rows, is shown in Fig. 1 (Leechai
et al., 2009). A typical placement algorithm assigns machines to
rows, starting at the bottom left hand side, then moves to the next
row when a space constraint is encountered (Hicks, 2006). In the
example, the flow paths, shown as dashed lines, represent the
rectilinear movement of material handling equipment, e.g. auto-
mated guided vehicles, which can move to left or right side of the
row and then move up or down to the destination row. A common
objective is to minimise the rectilinear distance travelled by the
material. For example, in Fig. 1a routing includes movement from
M4 to M11 – route A is shorter than route B, so route A would be
assumed.

Most of the research on the facilities layout problem has as-
sumed a static model where conditions remain constant over a
long period. This is known as the static facility layout problem
(SFLP) (Drira et al., 2007). However, changes in demand and pro-
duct mix can arise from the introduction of new products, the
discontinuation of existing products, shorter product life cycles
and market fluctuations (Sahin and Turkbey, 2009, p. 6856). These
issues can result in changes to the material flow (Sethi and Sethi,
1990; Chan and Malmborg, 2010). The dynamic facility layout
problem (DFLP) has been defined as “the minimisation of material
flow costs in all periods plus the rearrangement costs for a series
of SFLPs. In a DFLP, the rearrangement costs are added whenever
an area contains different departments in consecutive time peri-
ods. In summary, the total sum of the rearrangement costs and the
material flow costs are minimised” (Drira et al., 2007, p. 6856).
Rearrangement costs include labour, equipment and lost produc-
tion (McKendall et al., 2006; Moslemipour and Lee, 2012). The
redesign costs for each resource can be either equal (Corry and
Kozan, 2004) or unequal (Chen, 2013). The cost may be based on
the number of moved machines (Corry and Kozan, 2004) or the
total distance that machines are moved (Montreuil and Laforge,
1992). The redesign costs incurred between periods can be accu-
mulated and compared to a budget (Baykasoglu et al., 2006). The



Table 1
A comparison of Genetic Algorithm and Backtracking Search Algorithm
terminology.

Genetic Algorithm Backtracking Search Algorithm

Gene Element
Chromosome Individual
Population Population
Generation Iteration
Number of generations Maximum number of cycles
Probability of crossover/mutation Mix rate
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material handling costs (flow costs) may be estimated by multi-
plying the material flow distance by the cost per distance travelled
(Chan and Malmborg, 2010). The demand profiles for each time
period can be based upon forecasts (Ertay et al., 2006) or some
statistical distribution can be assumed such as the uniform dis-
tribution (Krishnan et al. 2009; Jithavech and Krishnan, 2010),
normal distribution (Tavakkoli-Moghaddam et al., 2007) or ex-
ponential distribution (Chan and Malmborg, 2010). Fuzzy numbers
have also been used for representing stochastic flow between fa-
cilities (Enea et al., 2005).
3. Genetic Algorithms

The Genetic Algorithm (GA) is a population-based, nature-in-
spired algorithm (Goldberg, 2002; Gen et al., 2008; Yang, 2008).
The approach is based upon an analogy with biological evolution.
The probability of an individual surviving or reproducing is de-
termined by its fitness. The GA algorithm starts by encoding the
problem to produce a list of genes that may be represented as
numeric or alphanumeric characters. The genes are then randomly
combined to produce a population of chromosomes, each of which
represents a possible solution. Offspring are produced by crossover
and mutation genetic operations which are performed on chro-
mosomes that are randomly selected from the population. The
fitness of these chromosomes determines their probability of
survival (Pongcharoen et al., 2002; Pongcharoen et al., 2004). Their
survival is determined by their fitness.

The crossover and mutation operators provide mechanisms for
exploitative and explorative search respectively (Gen and Cheng,
1997). GAs have been successfully applied to solve many science
and engineering problems especially in production and operations
management (Aytug et al., 2003; Chaudhry and Luo, 2005; Pong-
charoen et al., 2008; Thapatsuwan et al., 2009). GAs have been
used to solve static and dynamic FLPs (Drira et al., 2007). Dunker
et al. (2005) presented an algorithm that combined dynamic
programming and genetic search for solving a DFLP with depart-
ments of unequal size. Jithavech and Krishnan (2010) developed a
GA that used a simulation approach to quantify uncertainties in
demand. This was used to produce robust configurations that
minimised the risks associated with the department layout design.
Mazinani et al. (2013) developed an approach for determining the
positions of departments for multiple periods that minimised the
sum of material handling and rearrangement costs. They assumed
deterministic flow between departments and random rearrange-
ment costs. Krishnan et al. (2008) developed a Genetic Algorithm
approach for solving the stochastic dynamic facilities layout
problem.
4. Backtracking Search Algorithm

The Backtracking Search Algorithm (BSA) developed by Civi-
cioglu (2013) is a population-based iterative evolutionary algo-
rithm that was designed to achieve global optimisation. It can be
efficiently used for highly nonlinear, multivariable, and multi-
modal function optimisation problems (Civicioglu, 2013). The BSA
has a simple structure; so that it can be easily adapted to different
numerical optimisation problems. The algorithm is robust, easy to
implement, and has fewer control parameters to tune than typical
evolutionary algorithms and it is not over sensitive to the initial
values used (Song et al., 2015).

The data structures used by the BSA and Genetic Algorithms are
equivalent, but different terminology is used (see Table 1). The BSA
has three parameters: the mix rate for the crossover process; the
population size and the maximum number of cycles. In
comparison the GA has four parameters (the population size, the
number of generations, the probability of crossover, and the
probability of mutation). The BSA uses a ‘dual-population’ algo-
rithm that uses the current and previous populations, which gives
it a ‘memory’ (Lin et al., 2015). The BSA’s strategies for generating
trial populations and controlling the amplitude of the search-di-
rection matrix and search-space boundaries give it very powerful
global exploration and local exploitation capabilities (Civicioglu,
2013).

The BSA has been used to solve engineering problems, but
there are no examples of its use for solving operations manage-
ment problems or layout problems. Modiri-Delshad and Abd Ra-
him (2014) compared the BSA's performance to several alternative
classical and evolutionary methods including Genetic Algorithms,
improved evolutionary programming, modified Particle Swarm
Optimisation and pattern search for solving four economic dis-
patch (ED) test cases. The objective of ED problems is to determine
how power is shared amongst power system generating units to
meet electrical demand, whilst minimising cost and satisfying
system constraints. For the ED problems tested, the BSA produced
high quality results that converged to a lower cost than the other
methods. The BSA has also been used for solving the optimal
power flow (OPF) problem, which may be defined “as meeting
customers’ energy requirements with the minimum cost of energy
generation” (Kılıç, 2014, p.1). For the (OPF) problem, the minimum
cost obtained by the BSA was better than the other algorithms
tested (Genetic Algorithm, Simulated Annealing, Ant Colony Op-
timisation, and Tabu Search) (Kılıç, 2014). Song et al. (2015) used
the Backtracking Search Algorithm for surface wave analysis in
geophysics and compared the results with those produced by a
Genetic Algorithm (Song et al., 2015). The results produced by the
BSA were better than the GA in terms of accuracy and the con-
vergence rate.

Askarzadeh and Coelho (2014) investigated the improvement,
evaluation, management, and optimisation of proton exchange
membrane fuel cells (PEMFCs). The performance of the cells is
dependent upon parameters related to nonlinearities associated
with the electrochemical processes. This is a complex problem
because the impact of each parameter varies according to various
polarisation curves which are different. It was found that the BSA
produced results that were better than a wide range of other op-
timisation approaches including the bird mating optimiser (As-
karzadeh, 2013) and differential evolution (Chakraborty et al.,
2012; Gong and Cai, 2013).

Duan and Luo (2014) developed an adaptive BSA, which varied
the probabilities of crossover and mutation according to the fitness
values of solutions. The approach was used to solve induction
magnetometer optimisation problems. The adaptive algorithm
generated better solutions than the basic BSA, the Differential
Evolution Algorithm (Brest et al., 2006), Particle Swarm Optimi-
sation (Kennedy and Eberhart, 1995) and the Artificial Bee Colony
(Karaboga and Basturk, 2007). Das et al. (2014) combined the BSA
with the Differential Evolution Algorithm to solve interference
suppression problems associated with linear antenna arrays. The
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approach produced higher quality solutions which converged
more quickly than a range of other evolutionary approaches.
5. Problem formulation

The following assumptions were made in order to formulate
the problem: (i) the material flow distance between machines was
measured using the rectilinear distance between the machines’
centroids (Krishnan et al., 2009; Jithavech and Krishnan, 2010;
Pillai et al., 2011); (ii) the machines were arranged in multiple
parallel rows (Leechai et al., 2009); (iii) there was enough space on
the shop floor for the machines to be arranged; (iv) the movement
of materials was in rectilinear straight lines; (v) when the layout
was redesigned the machines were moved in rectilinear straight
lines; (vi) the gap between machines was predefined and con-
stant; (vii) the demand profiles were obtained from empirical data
(when the demand in each time period was known) and by using
probability distributions (e.g. exponential, normal distribution, or
uniform); (viii) the demand patterns for different products were
independent; (iv) the redesign cost was determined by the recti-
linear distance that machines were moved; (x) material flow costs
were calculated by multiplying the material flow distance by the
cost per unit distance; and (xi) the processing time and moving
time were not taken into consideration.

Fig. 2 illustrates the dynamic facilities layout problem in which
the demand changes for each period D1.. DP, where P is the total
number of periods. Consider the situation at the beginning of
period k, when the layout is initially the same as the last period
Lk�1. The total estimated costs of maintaining the existing design
Lk�1 with the forecast demand for the forthcoming period Dk is
compared with the estimated total cost for the following period if
the facility is redesigned. If the total cost of changing the design is
greater, the layout is left unchanged i.e. Lk¼Lk�1, otherwise the
design is changed. In order to undertake this evaluation a test
layout LT is generated by redesign. The estimated material flow
cost Fk (for period k), and the redesign cost CR associated with LT
that would arise due to machine movement is calculated using Eq.
1 and Eq. 2, respectively. If the savings in material flow i.e. the cost
without redesign (Fk with the layout Lk�1) minus material flow
cost with redesign ( ′Fk with LT ) is greater than the redesign cost CR
then the layout for period k becomes Lk¼LT, otherwise it is left the
same Lk¼Lk�1. The redesign cost is calculated by multiplying the
total machine movement distance by CMD. In the experiments
discussed in Section 7, this was assumed to be 50 currency units
per metre as adopted by Vitayasak et al. (2014).
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Fig. 2. The dynamic facilities layout problem.
where k is a time period index (k¼1, 2, 3, …, P), where P is the
number of periods; CMH is the material flow cost per distance unit;
N is the number of product types; g is a product index (g¼1, 2, 3,
…, N); M is the number of machines; i and j are machine indexes (i
and j¼1, 2, 3, …, M); dijk is the rectilinear distance from machines i
to j (i≠j) for period k; fgij is the frequency of material flow from
machines i to j for product g; Dgk is the customer demand for
product g in period k; CR is the redesign cost; CMD is the cost per
unit distance for moving machines; and Vik is the rectilinear dis-
tance moved by machine i in period k.
6. The development of an optimisation tool for solving the
stochastic dynamic facilities layout problem

A stochastic dynamic facilities layout tool (SDFLT) was devel-
oped for solving the stochastic dynamic facilities layout problem
that included a Genetic Algorithm, a Backtracking Search Algo-
rithm and modified Backtracking Search Algorithms. The tool was
coded in a modular style using the Tool Command Language and
Tool Kit (Tcl/Tk) programming language (Ousterhout, 2010). The
tool has the capability to produce layouts with heterogeneous
resources and the placement algorithm assumes a continuous
plane. The data flow diagram for the layout optimisation tool is
shown in Fig. 3. The dynamic facilities layout optimisation tool
starts by obtaining input data. Each record of input data com-
prises: (a) the parameters that specify the stochastic dynamic fa-
cilities layout problem characteristics – the number of periods P,
the number of machines M, the number of products N; floor
length:, FL floor width: FW, and the specified gap between the
machines G; (b) for each machine (i¼1..M) machine width MWi

and machine length MLi; (c) for each product–demand profiles
Dg1…DgN for products g¼1…N, including the necessary para-
meters for the exponential, normal and uniform distributions; and
the frequency fgij that product g moves between machines i and j;
(d) the Genetic Algorithm's parameters – the population size Pop;
the number of generations Gen; the probability of crossover Pc;
and the probability of mutation Pm; (e) the BSA parameters – po-
pulation size Pop, maximum number of cycles MaxCycle, and the
mix rate for the crossover process Mixrate.

When the tool has completed its runs, the results are pre-
sented. The best-so-far results are reported in text format in-
cluding a list of the machines in each row, material handling dis-
tances, material flow costs, redesign costs, and total costs. The
optimised layout can be also shown as a 2D plan.

6.1. Genetic Algorithm

The pseudo-code for the proposed GA for FLD tool is shown in
Fig. 4. It follows the following procedure: (i) the problem is en-
coded to produce a list of genes using numeric strings. Each
chromosome contains a number of genes, each representing a
Fig. 3. Data flow diagram for the Stochastic Dynamic Facilities Layout tool.



Fig. 4. Genetic Algorithm pseudo-code.
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machine number, so that the length of chromosome is equal to the
total number of machines that are to be arranged; (ii) in period k,
an initial population based on the specified population size is
randomly generated; (iii) the crossover and mutation operators are
applied to generate new offspring in accordance with Pc and Pm;
(iv) the machines are arranged row-by-row using a placement
algorithm constrained by FL and FW; (v) the total material flow cost
is evaluated; (vi) the best chromosome that has the minimum total
material flow cost is selected using Elitist Selection (Gen and
Cheng, 1997); (vii) the chromosomes for the next generation are
chosen by using Roulette Wheel selection (Gen and Cheng, 1997);
(viii) the GA process is stopped for period k after the specified
Fig. 5. Pseudo-code of BSA (mod
number of generations G have been completed. When the GA
process is terminated, the best-so-far solution is reported; (ix) the
redesign cost is compared with the reduction in material flow cost
associated with the redesign. If the reduction in material flow cost
due to test redesign is greater than the test redesign cost, the re-
design is adopted – otherwise the layout is left unchanged; and
(x) the optimisation process is stopped when all of the periods
have been considered.
6.2. Backtracking Search Algorithm

The BSA consists of five processes: initialisation, selection-I,
mutation, crossover and selection-II. The pseudo-code for the
proposed BSA is shown in Fig. 5. The BSA procedure has the fol-
lowing steps for each period k:

i) the problem is encoded to randomly produce an initial po-
pulation Pop of individuals (each of which represents a can-
didate solution that comprises a sequence of machines). In the
first iteration an old population OldPop is created randomly.
For later iterations OldPop is randomly copied from a previous
iteration;

ii) a layout is created using a placement algorithm and the ma-
terial flow cost Fk,l (for period k, iteration l) is calculated for all
of the individuals within Pop;

iii) the Selection I procedure is applied. It has two parts: (1) two
uniformly distributed random numbers are generated in the
range 0–1. If aob the old population OldPop becomes the
current population, otherwise OldPop retains its previous va-
lue; and (2) the permuting procedure which randomly
ified from Civicioglu (2013)).



Fig. 6. Swapping operation.

Fig. 7. Swapping steps.

Fig. 8. Backtracking Search Algorithm mutation procedure.
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changes the order of the individuals within the population;
the mutation procedure is illustrated in Fig. 6. The steps are as
follows: (1) identify the first element of OldPop (in this case
with a value of 4). Then locate the position of the value 4 in
Pop. In this example the value 4 is the fifth element of Pop;
(2) in this case swap the first (location of value 4 in OldPop)
and fifth (the location of value 4 in Pop) elements within Pop;
(3) Having processed the first element in OldPop move to the
second element. In this case containing the value 2. The
position of value 2 in Pop is then identified. In this case it is
the ninth element; (4) the second and ninth elements (the
locations of the value 2 in OldPop and Pop) are then swapped
as shown. When the process is undertaken for the third time,
the value 5 is positioned in element 3 for both Pop and OldPop.
When this situation occurs there is no swapping of elements.
This process is continued until all the elements within OldPop
have been processed by this procedure; Fig. 7 shows the next
step, which is to count how many swaps have taken place. In
this case it is 7 i.e. (4,1), (2,7), (1,3), (9,3), (10,3), (8,3) and (3,7).
Fig. 8 shows the final step, which is to multiply the number of
steps by a uniform random variable F in the range 0–1. In the
example, F is 0.48, so the number of swaps is 7*0.48¼3.36,
which rounds to 3. In this case, the first three swaps are
undertaken and the remaining swaps are ignored as shown.
This process is repeated for all of the individuals within Pop.
The resultant population is called ‘Mutant’;

iv) the crossover process is undertaken. It has two parts: creating
mapped values; and generating a trial population. These are
explained in (v) and (vi) below.

v) mapped values are created by the following steps: (1) two
uniformly distributed random numbers c and d in the range 0–
1 are generated. If cod then for each individual in Pop the
number of elements to be mapped is calculated. This is illu-
strated in Fig. 9. The individuals within the population are on
the left. The number of elements to be mapped is calculated by
multiplying the number of elements in each individual by the
mix rate and by a uniformly distributed random number in the
range 0–1, as shown in the second column of Fig. 9. The next
step is to map the values. If the number of values to be
mapped is 2 the first two elements in the mapped value array
are set to zero and the other elements are set to 1 as shown in



Fig. 9. Process of creating mapped values for cod.

Fig. 10. Processes of creating mapped values for cZd.

Fig. 11. Operation for generating the trial population in step (vi).
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the final column of Fig. 9. If cZd only one element is mapped
as shown in Fig. 10.

vi) the trial population is generated using the following steps:
(1) the trial population is initially the mutant population that
was generated in step (iv) above; (2) for each individual within
Pop the value for each element is selected from Pop if the
mapped value is 0 otherwise it is selected from Mutant. Fig. 11
shows the crossover operation used for generating new
individuals for the trial population. The mapped values of
the first six indexes equal to 0, so the first six indexes of the
new individual are obtained from individual no.1 and the
remaining indexes are selected from Mutant.

a) Selection II – for each individual within the trial population
the material flow cost is calculated (using Eq. (1) above) and
compared with the value of the corresponding individual in
Fig. 12. Pseudo-code (a) Control mechanism for mBSA1; (b) Cr
Pop. The set of individuals with the lowest material flow costs
are then selected from either Mutant or Pop to create the new
population for the next iteration. The best individual with the
lowest material flow cost is selected and a placement algo-
rithm is used to produce a test layout;

b) the redesign cost for the test layout is calculated by con-
sidering the distance of machine movements as shown in Eq.
(2) above. If the reduction in material flow costs exceeds the
redesign costs the layout is changed, otherwise the previous
layout is maintained.
6.3. Modified Backtracking Search Algorithm

In order to enhance its exploration and exploitation capacities,
the proposed BSA was modified in three ways: (i) the control me-
chanism was applied after the crossover process as shown in
Fig. 12a; (mBSA1); (ii) the process of creating mapped values was
changed to create mBSA2 as shown in Fig. 12b; and (iii) the BSAwas
modified to include both mBSA1 and mBSA2, which was called
mBSA3. The mBSA1 can prevent similar solutions being produced in
the trial population (T) and the existing population (P) by using the
swap operation shown in Fig. 13. The mBSA2 was designed to in-
crease the diversity of solutions. For mBSA2, c and d were rando-
mised in every solution as shown in Fig. 14 which is different to the
standard BSA. The c and d values in the BSA were randomised only
once, so it was possible for the number of elements to be mapped to
be the same as shown in Fig. 10 (in case of cZd).
eation of mapped values in crossover process for mBSA2.



Table 2
Datasets for the experimental programme.

Datasets Number of machine (M) Number of products (N)

10M5N 10 5
10M10N 10 10
20M10N 20 10
20M20N 20 20

S. Vitayasak et al. / Int. J. Production Economics 190 (2017) 146–157 153
7. Computational experiments

The computational experiments used the eleven datasets
shown in Table 2 (Vitayasak et al., 2014). The naming convention
10M5N indicates that the dataset included the production of five
products that were processed on ten non-identical rectangular
machines. Each type of product had different demand profiles and
machine sequences as shown in Table 3 (Vitayasak et al., 2014).
Previous research on robust layout design has recommended set-
tings for the BSA parameters as follows: Pop¼25, Maxcycle¼100
and Mixrate¼0.9 (Vitayasak and Pongcharoen, 2014a). Vitayasak
and Pongcharoen (2014b) recommended that the best settings for
the GA parameters (Pop, Gen, Pc, and Pm) are 25, 100, 0.9 and 0.9,
respectively. Vitayasak and Pongcharoen (2011) recommended the
Two-point Centre Crossover (2PCX) and the Two Operation Ran-
dom Swap (2ORS) genetic operators therefore these were adopted.

The computational experiments were performed using five al-
gorithms (GA, BSA, and three modified BSAs (mBSA1, mBSA2, and
mBSA3)) as described previously. Each algorithm was tested using
the 11 datasets and analysed statistically. For each dataset, each
algorithm was replicated 30 times using the recommended para-
meter settings. (Bluman, 2008) identified that 30 replications is
the minimum number that can be used to achieve an approx-
imation to be the normal distribution, which is required for the
statistical tests to be valid. The computational results were ana-
lysed in terms of the mean, standard deviation (SD) minimum,
maximum, and computational time (seconds) as shown in Table 4.
The best results are shown in bold.

All of the modified BSAs gave better solutions than the stan-
dard BSA except for the 10M10N problem. The quality of solutions
Fig. 13. mBSA1 Swap operation.

Fig. 14. Creation of mapped values in
measured in terms of the mean total cost for mBSA2 was better
than mBSA1 for nine datasets. The new process for creating
mapped values generated a higher variety of solutions than the
standard approach. The mBSA3 produced the lowest mean total
cost except for datasets 10M5N, 10M10N, and 20M20N. The com-
bination of control mechanisms and the improved mapping pro-
cess helped the algorithm escape from local optima. In terms of SD
value, the mBSA1 generated the lowest SD for almost all of the
datasets. This indicates that the algorithm produced the lowest
diversity of solutions. The mean computational times required for
the BSA and modified BSAs were slightly different.

The mean total cost obtained by the GA was lower than mBSA3
for the first seven datasets. The Student's t-test showed that there
were statistically significant differences in mean total cost (since
the P values were less than 0.05 for all datasets) for five datasets.
The solutions obtained by mBSA3 were better than the GA for
datasets with forty and fifty machines. The mBSA3 generated
significantly better solutions than the GA for datasets 40M20N and
40M40N.

In the 40M40N case, the convergence of the GA, BSA and
modified BSAs were analysed by plotting the average best-so-far
the crossover process for mBSA2.

20M40N 20 40
30M15N 30 15
30M30N 30 30
40M20N 40 20
40M40N 40 40
50M25N 50 25
50M40N 50 40

Table 3
Summary of product demand profiles and machine sequence for 10M5N.

Product Product demand distribution Machine sequence

1 Uniform (100, 200) 2–1–6–5–8–9–3–4
2 Uniform (50, 100) 10–8–7–5–9–6–1
3 Normal (180, 50) 9–2–7–4
4 Normal (300, 120) 8–10–5–9–6
5 Exponential (1/200) 2–4–8–10–7



Table 4
Comparison of total costs associated with the layouts produced by GA, BSA and three mBSAs Unit: currency unit.

Dataset Value Algorithm P value of t-test

GA BSA mBSA1 mBSA2 mBSA3 GA and mBSA3

10M5N Mean 318,834 324,229 323,751 317,079 319,129 0.923
SD 12,897 11,793 13,547 9,147 10,574
Min 301,102 304,850 304,896 304,051 306,305
Max 355,462 349,125 346,980 345,216 343,949
Time 66.0 26.0 29.0 24.0 29.0

10M10N Mean 786,080 795,354 801,745 795,632 795,672 0.029
SD 18,989 21,322 15,107 17,616 13,615
Min 762,404 764,078 769,479 767,154 762,404
Max 830,284 840,332 828,455 827,320 814,738
Time 111.0 50.0 49.0 48.0 47.0

20M10N Mean 1,655,452 1,706,708 1,684,724 1,667,579 1,672,991 0.014
SD 27,793 21,633 14,633 28,040 25,571
Min 1,588,655 1,670,670 1,646,906 1,613,371 1,620,772
Max 1,701,282 1,759,082 1,718,485 1,724,126 1,724,242
Time 236.0 88.0 102.0 99.0 105.0

20M20N Mean 5,233,863 5,418,975 5,325,315 5,341,733 5,313,282 0.000
SD 51,923 59,050 42,152 51,148 45,789
Min 5,127,319 5,290,691 5,249,015 5,216,302 5,230,165
Max 5,324,560 5,512,954 5,416,026 5,467,212 5,390,481
Time 410.0 162.0 163.0 159.0 165.0

20M40N Mean 10,276,216 10,602,908 10,432,590 10,466,419 10,395,917 0.000
SD 74,198 82,151 56,273 65,026 64,450
Min 10,124,645 10,434,114 10,280,667 10,352,539 10,238,749
Max 10,416,961 10,811,156 10,539,035 10,569,175 10,547,172
Time 845.1 209.0 208.0 207.0 214.0

30M15N Mean 3,922,999 4,119,722 4,046,627 4,008,069 3,982,044 0.000
SD 59,537 52,352 39,665 53,764 55,367
Min 3,825,041 3,995,791 3,977,473 3,924,952 3,857,773
Max 4,107,244 4,208,028 4,116,787 4,133,968 4,085,489
Time 611.6 153.0 153.0 155.0 157.0

30M30N Mean 8,361,651 8,712,238 8,470,386 8,452,086 8,396,821 0.131
SD 89,134 133,221 105,796 124,652 88,876
Min 8,201,074 8,428,954 8,300,222 8,142,560 8,211,189
Max 8,491,160 9,065,532 8,706,214 8,669,958 8,557,450
Time 637.2 272.0 271.0 279.0 273.0

40M20N Mean 7,726,750 8,253,328 7,930,640 7,797,841 7,645,462 0.012
SD 139,507 133,813 91,485 117,500 97,005
Min 7,539,443 7,990,904 7,729,541 7,546,052 7,389,977
Max 8,009,115 8,618,407 8,169,437 8,041,996 7,833,029
Time 900.5 218.7 221.4 218.7 229.5

40M40N Mean 14,381,572 15,353,287 14,626,948 14,451,439 14,199,334 0.005
SD 257,817 246,172 157,891 232,508 227,414
Min 13,848,367 14,785,144 14,401,680 14,074,947 13,702,401
Max 14,821,397 15,764,056 14,891,742 14,950,553 14,651,132
Time 1,474.2 395.6 348.3 338.9 398.0

50M25N Mean 12,443,878 13,424,172 12,829,734 12,562,368 12,408,188 0.498
SD 249,033 226,738 127,294 169,301 141,425
Min 11,752,732 12,942,229 12,535,624 12,330,939 12,176,892
Max 12,917,746 13,894,422 13,034,445 13,081,449 12,663,321
Time 1,043.6 318.0 303.8 294.3 298.4

50M40N Mean 18,729,876 19,936,087 19,143,272 18,769,212 18,618,543 0.078
SD 238,603 294,974 184,706 220,927 242,379
Min 18,233,882 19,266,096 18,798,687 18,375,822 18,182,190
Max 19,451,099 20,512,922 19,560,610 19,346,277 19,202,166
Time 1,005.8 365.9 400.3 383.4 417.6
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Fig. 15. Comparison of convergence between GA, BSA and mBSAs for 40M40N case.

Fig. 16. Graphic layouts reported from the machine relayout design tool for 40M40N case in. (a) Period 1, (b) Period 2, (c) Period 3, (d) Period 4, and (e) Period 5.
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(BSF) solutions achieved in each generation (obtained from the 30
replicated runs) as shown in Fig. 15. The GA had faster convergence
than both the BSA and mBSAs especially in the fifth generation.
However, the mBSA3 algorithm produced better results than the
GA after the seventy-fifth generation, Both the modified control
mechanism (mBSA1) and the revised mapping creation process
(mBSA2) were useful for increasing the diversity of chromosomes
during the search process and helped the search escape from local
optima Examples of two dimensional plans that illustrate the BSF
solutions produced by the tool for five periods using the mBSA3
are presented in Fig. 16a–e. The plans changed between the peri-
ods because the sum of redesign cost and material handling cost of
the new layouts were lower than material handling cost of the
previous layouts.

In order to achieve a fair comparison of the performance of the
GA and BSA parameters were selected that achieved the same
amount of search for both algorithms. For the GA, the amount of
search is governed by the combination of Pop and Gen; The cor-
responding parameters for the BSA are Pop and Maxcycle. In each
generation, the GA process consists of three loops including
crossover, mutation, and selection. In each cycle of the BSA there
are four loops: mutation, two crossover loops, and selection II.
However, each loop with the GA mechanism is more complex than
with the BSA. The computational time taken by the BSA and the
modified BSAs was at least 55% less than the GA for all of the
datasets.
8. Discussion and conclusions

This paper has presented a tool that effectively solves stochastic
dynamic facilities layout problems taking into account demand
over several time periods using Genetic Algorithms and the
Backtracking Search Algorithm (BSA). The BSA has been used for
solving a range of engineering problems, but no previous research
has used it for solving the stochastic dynamic facilities layout
problem. Further, the BSAwas successfully modified to improve its
search capability. The algorithms aimed to minimise the combi-
nation of material flow and redesign costs. The computational
experiments were based on eleven datasets obtained from the
literature. The experimental results indicated that the GA's per-
formance was better than the conventional BSA in terms of
minimising total cost. However, the BSA produced solutions much
more quickly for all datasets. The performance of the conventional
BSA was improved by applying three modifications: (i) applying
the control mechanism after the crossover process (mBSA1); (ii)
changing the process of creating mapped values (mBSA2); and (iii)
a combination of both mBSA1 and mBSA2 (mBSA3). The solution
quality obtained by mBSA3 was better than the other BSAs. The
mBSA3 algorithm generated significantly better solutions than the
GA especially for the forty-machine datasets. The BSA3 mechanism
that included a control mechanism a process for creating mapped
values led to increased diversification and exploration of solutions.
This allowed the BSA to escape from local optima and improve the
efficiency of the search process. The performance of the modified
BSA (mBSA3) and the GA were similar for four datasets, but the
average computational time required by mBSA3 was at least 55%
less than the GA. This would suggest that the BSA would be par-
ticularly suitable for solving large, computationally intensive op-
timisation problems especially in the area of engineering for
production an operation management such as lot sizing, resource
allocation, and bottleneck allocation in manufacturing system.
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